Основные виды рычажных механизмов. Подъёмная сила Теория механизмов и машин

Основные виды рычажных механизмов.

1. Кривошипно-ползунный механизм.

а) центральный (рис.1);

б) внеосный (дезоксиальный) (рис.2);

е - эксцентриситет

Рис. 2

1-кривошип, т.к. звено совершает полный оборот вокруг своей оси;

2-шатун, не связан со стойкой, совершает плоское движение;

3-ползун (поршень), совершает поступательное движение;

1 - кривошип;

2 - камень кулисы (втулка) вместе с зв.1 совершает полный оборот вокруг А (w1 и w2 одно и тоже), а также движется вдоль зв.3, приводя его во вращение;

3 - коромысло (кулиса).

В процессе проектирования конструктор решает две задачи:

· анализа (исследует готовый механизм);

· синтеза (проектируется новый механизм по требуемым параметрам);

Лекция 2.

Глава 1. Анализ рычажных механизмов .

В данной главе будут рассмотрены вопросы:

1. структурный анализ механизма (изучение строения механизма);

2. изучение классов и видов кинематических пар.

3. определение числа степеней свободы механизма и определение наличия или отсутствия избыточных связей; в случае наличия - дать рекомендации по способу их устранения;

4. кинематический анализ механизма.

Примечание :

Кинематическая пара существует, если не происходит деформации звеньев, образующих эту пару, и не должно происходить отрыва звеньев одно от другого, образующих кинематическую пару.

Примечание:

Ограничения, накладываемые на независимые движения звеньев, образующих кинематическую пару, называются - условия связи S.

Число степеней свободы механизма

где Н - подвижность .

Любое незакрепленное тело в пространстве имеет 6 степеней свободы, на плоскости - 3.

Классификация кинематических пар проводят либо числу связей, либо по числу подвижностей:

Число связей Класс КП Число подвижностей

S=1 P I H=5

S=2 P II H=4

S=3 P III H=3

S=4 P IV H=2

S=5 P V H=1

Существует 5 классов кинематических пар.

Примеры различных КП смотри рис. 4-95.

Кинематические пары по характеру контакта звеньев, образующих КП, разделяют на:

1. низшие:

· вращательные;

· поступательные;

2. высшие.

Контакт звеньев в низшей КП осуществляется по поверхности. Контакт звеньев в высшей КП - либо по линии, либо в точке.

§1.2 Определение числа степеней свободы рычажных механизмов.

1.2.1 Плоские механизмы.

В плоском механизме все звенья движутся в одной плоскости, все оси параллельны друг другу и перпендикулярны плоскости механизма.

ФОРМУЛА ЧЕБЫШЕВА : W пп =3n -2p н -p в ,

Где n - число подвижных звеньев механизма, р н - число низших КП, р в - число высших КП.

Рис.1.2.1

1.2.2 Пространственные механизмы.

В пространственном механизме оси непараллельны, звенья могут двигаться в разных плоскостях.

W пр = 6n - (S 1 + S 2 + S 3 + S 4 + S 5)

Допустим, что механизм, изображенный на рис.1.2.1 - пространственный и все кинематические пары 5-го класса, т.е. одноподвижны A V ,B V ,C V ,D V , тогда

W пр = 6n - (5p V +4p IV +3p III +2p II+ p I)

W пр = 6 . 3 - 5 . 4 = -2 à статически неопределимая ферма.

Для получения W действ =0, необходимо добавить 3 движения.

q= W действ - W пр = 1 - (-2) = 3,

где q - избыточные связи .

Для того чтобы их устранить, надо изменить класс некоторых кинематических пар, при этом нельзя изменять класс КП А. Поэтому, сделаем КП В - сферическим шарниром, т.е. 3-го класса (добавим 2 подвижности), а КП С - 4-го класса (добавим 1 подвижность). Тогда

W пр = 6 . 3 - (5 . 2 + 4 . 1 + 3 . 1) = 18 - 17 = 1

ФОРМУЛА СОМОВА-МАЛЫШЕВА: W пр = 6 . n - ΣS i + q

§1.3 Кинематический анализ рычажных механизмов.

1.3.1 Основные понятия и определения.

Зависимость линейных координат в какой-либо точке механизма от обобщенной координаты - линейная функция положения данной точки в проекциях на соответствующие оси координат .

Зависимость угловой координаты какого-либо звена механизма от обобщенной координаты - угловая функция положения данного звена.

Первая производная линейной функции положения точки по обобщенной координате - линейная передаточная функция данной точки в проекциях на соответствующие оси координат (иногда называют «аналог линейной скорости…»)

полная скорость т. С будет

Первая производная угловой функции положения звена по обобщенной координате - передаточное отношение .

Вторая производная линейной функции положения по обобщенной координате - аналог линейного ускорения точки в проекциях на соответствующие оси .

Вторая производная угловой функции положения звена по обобщенной координате - аналог углового ускорения звена .

1.3.2 Аналитический способ определения кинематических параметров рычажных механизмов.

Дано: w 1 , l AB , l BS 2 , l BC , l AC

Определить: v i , a i , w 2 , e 2 .

Для исследования плоских рычажных механизмов для решения данной задачи целесообразно использовать метод проецирования векторного контура на оси координат.

Для определения функции положения точки С представим длины звеньев в виде векторов.

Условие замкнутости данного контура:

(3)

рис.1.3.2 из (3) следует, что

(4)

Лекция 3.

Продифференцируем (3) по обобщенной координате:

(5)

Продифференцируем (2) по обобщенной координате:

Если необходимо определить функции положения центра масс, то вы делим векторный контур ABS 2

Условие замкнутости данного векторного контура имеет вид:

(6)

(7)

Продифференцируем (7) по обобщенной координате и получим аналоги линейных скоростей точек S 2 в проекциях на оси х и у:

(9)

Глава 2. Анализ машинного агрегата.

В данной главе будут рассмотрены следующие вопросы:

1. Силы и моменты, действующие в машинном агрегате.

2. Переход от расчетных схем машинных агрегатов к динамическим моделям.

3. Расчет усилий в кинематических парах основного механизма рабочей машины.

4. Определение законов движения главного вала (входного звена) рабочей машины под действием приложенных сил и моментов при различных режимах работы машинного агрегата.

§2.1 Силы и моменты, действующие в машинном агрегате.

2.1.1 Движущиеся силы и моменты F д и М д .

Работа движущих сил и моментов за цикл положительна: А д >0.

Цикл - промежуток времени, по истечению которого все кинематические параметры принимают первоначальное значение, а технологический процесс, происходящий в рабочей машине, начинает повторяться вновь.

2.1.2 Силы и моменты сопротивления (F с, M с).

Работа сил и моментов сопротивления за цикл отрицательна: А c <0.

2.1.3 Силы тяжести (G i).

Работа силы тяжести за цикл равна нулю: А Gi =0.

2.1.4 Расчетные силы и моменты (Ф Si, M Фi).

Ф Si, M Фi - Главные векторы сил инерции и главные моменты от сил инерции.

2.1.5 Реакции в кинематических парах (Q ij).

§2.2 Понятие о механических характеристиках.

Механическая характеристика 3-х фазного асинхронного двигателя.

Индикаторная диаграмма ДВС

H - ход поршня в поршневой машине

(расстояние между крайними

положениями поршня)

Индикаторная диаграмма насоса

Как правило, из паспорта известен диаметр поршня, по нему можно определить площадь S п = p . d 2 /4, тогда сила: F=p . S п

Правило знаков сил и моментов :

· Сила считается положительной, если она по направлению совпадает с направлением движения того звена, к которому эта сила приложена.

· Момент считается положительным, если его направление совпадает с направлением угловой скорости вращения данного звена.

Имея механическую характеристику поршневой машины и учитывая правило знаков, то можно перестроить в график сил (см. лабораторную работу №4).

Основной вывод:

В течение всего цикла работы поршневой машины сила, приложенная к поршню, будет изменяться как по величине, так и по направлению, это в свою очередь приводит к колебаниям угловой скорости главного вала рабочей машины.

§2.3 Понятие о расчетной схеме машинного агрегата и переход от нее к динамической модели.

На расчетной схеме машинного агрегата отмечают основные силовые факторы, действующие в машинном агрегате; основные массы звеньев, влияющих на закон движения машинного агрегата; и основные жесткости валов. На рис.5-92 показан переход от реальной схемы к расчетной схеме (а) и от нее к динамической модели.

По проекту «Жилье и городская среда» объем бюджетного финансирования до конца 2024 г. составит 891 млрд. рублей, а с учетом средств из внебюджетных источников – почти 1,1 трлн рублей

«По проекту «Жилье и городская среда» объем бюджетного финансирования до конца 2024 г. составит 891 млрд. рублей, а с учетом средств из внебюджетных источников – почти 1,1 трлн рублей», - об этом заявил на прошедшей пресс-конференции заместитель председателя Комитета ГД по жилищной политике и ЖКХ Павел Качкаев.

По словам депутата, 507 млрд рублей из общего бюджета предназначены для программы сноса аварийного и ветхого жилья. «По новой формуле Минфина с 2019 года затраты по программе сноса аварийного и ветхого жилья в размере 95 % будут покрыты из федерального бюджета», - сказал Качкаев.

В то же время, по мнению депутата, не все имеющиеся «рычаги» используются для успешной реализации федерального проекта по «обеспечению устойчивого сокращения непригодного для проживания жилищного фонда». «В каждом городе существует программа по развитию застроенных территорий, где часть аварийного жилья сносится без привлечения бюджетных средств. Таким образом количество расселенных квадратных метров с 9,5 млн можно увеличить до 11-12 млн», -заявил Павел Качкаев.

Кроме того, спикер отметил, что Федеральный проект в настоящий момент находится на доработке в профильных ведомствах, где в него вносятся важные изменения. «Думаю, что целевые показатели программы будут достигнуты», - добавил Качкаев.

В свою очередь, заместитель председателя Общественного Совета при Министерстве строительства и жилищно-коммунального хозяйства РФ, исполнительный директор НП «Национальный центр общественного контроля в сфере жилищно-коммунального хозяйства «ЖКХ Контроль» Светлана Разворотнева остановилась на вопросах общественного контроля за исполнением национальных проектов.

Так, по мнению Разворотневой, механизм «обеспечения устойчивого сокращения непригодного для проживания жилищного фонда» так и не был предложен, несмотря на многочисленные обсуждения различных вариантов законов, направленных на привлечение внебюджетных средств для реализации этого проекта. «Сейчас эти механизмы предложены, проект будет дорабатываться, и мы будем активно в этом участвовать», - сказала спикер.

Кроме того, Светлана Разворотнева выразила мнение общественников о том, что для решения жилищной проблемы людей с низкими доходами должны активно использоваться такие инструменты как арендное жилье, субсидии для нанимателя, защита прав нанимателя, налоговые рычаги. «Механизм прост - если вы не сдаете пустующую квартиру, вам обходится это очень дорого», - отметила спикер.

Не меньшую озабоченность общественников вызывает составление так называемого «индекса качества городской среды». По мнению Разворотневой, в нынешней методике не учтены оценки и показатели, характеризующие комфортность проживания граждан на данной территории, реальную открытость для граждан результатов работы органов власти, вклад органов самоуправления в развитие территории.

«Этот индекс должен объединить достижения большого количества национальных проектов и должен отвечать на вопрос насколько комфортно жить в городе, насколько развита социальная инфраструктура и дорожная сеть, какова ситуация с рабочими местами на данной территории. Общественная палата, и «ЖКХ-контроль» должны осуществлять собственный мониторинг именно по этим показателям. По крайней мере, по взаимоотношению граждан и властей в каждом конкретном городе», - добавила С. Разворотнева

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ТРАНСПОРТА

Кафедра Детали машин

ОБЗОР ОСНОВНЫХ ВИДОВ МЕХАНИЗМОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по Теории механизмов и машин для студентов специальностей НР-130503, ПСТ-130501, НБ-130504, МОП-130602, АТХ-190601, СТЭ-190603, ПДМ-190205, СП-150202, ПТИ-260703, ТМ-151001, МКC-151002, МХП-240801, МСО-190207

очной и заочной полной и сокращенной форм обучения

Тюмень 2007

Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета

Составители: доцент, к.т.н. Забанов Михаил Петрович

профессор, д.т.н. Бабичев Дмитрий Тихонович

ассистент, Панков Дмитрий Николаевич

© государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

В процессе занятия необходимо ознакомиться с основными группами и видами механизмов, их графическими изображениями. Научиться представлять реальный механизм в виде схемы.

В отчете необходимо изобразить и описать классические виды механизмов.

Ведущей отраслью современной техники является машиностроение. Про­гресс машиностроения определяется созданием новых высокопроизводитель­ных и надежных машин. Решение этой важнейшей проблемы основывается на комплексном использовании результатов многих научных дисциплин и, в пер­вую очередь, теории механизмов и машин.

По мере развития машин содержание термина "машина" изменялось. Для современных машин дадим следующее определение: машина есть устройство, создаваемое человеком для преобразования энергии, материалов и информации с целью облегчения физического и умственного труда, увеличения его производительности и частичной или полной замены человека в его трудовых и физиологических функциях.

По выполняемым машинами функциям их делят на следующие классы:

1) Энергетические машины

2) Транспортные машины

3) Технологические машины

4) Контрольно-управляющие машины

5) Логические машины

6) Кибернетические машины

Определение термина "механизм" неоднократно менялось по мере того, как появлялись новые механизмы.

Механизм есть система тел, предназначенная для преобразования движения одного или нескольких твердых тел в требуемые движения других тел. Если в преобразовании движения кроме твердых тел участвуют жидкие или газообразные тела, то механизм называется соответственно гидравлическим или пневматическим. С точки зрения функционального назначения механизмы делятся на следующие виды:

1) Механизмы двигателей и преобразователей

2) Передаточные механизмы

3) Исполнительные механизмы

4) Механизмы управления, контроля и регулирования

5) Механизмы подачи, транспортировки и сортировки обрабатываемых изделий и объектов

6) Механизмы автоматического счета, взвешивания и упаковки готовой продукции

Основным признаком механизма является преобразование механического движения. Механизм входит в состав многих машин, т. к. для преобразования энергии, материалов и информации требуется обычно преобразование движения получаемого от двигателя. Нельзя отождествлять понятия "машина" и "механизм". Во-первых, кроме механизмов в машине всегда имеются дополни­тельные устройства, связанные с управлением механизмами. Во-вторых, есть машины, в которых нет механизмов. Например, в последние годы созданы тех­нологические машины, в которых каждый исполнительный орган приводится в движение от индивидуального электро- или гидродвигателя.

При описании механизмов, они были разделены на отдельные группы по признаку их конструктивного оформления (рычажные, кулачковые, фрикцион­ные, зубчатые и др.)

Механизмы образуются последовательным присоединениям звеньев к начальному механизму.

ЗВЕНО – одна или несколько неподвижно соединенных друг с другом деталей, входящих в механизм и движущихся, как одно целое .

ВХОДНОЕ ЗВЕНО – звено, которому сообщается движение, преобразуемое механизмом в требуемые движения других звеньев. Входное звено соединено с двигателем либо с выходным звеном другого механизма.

ВЫХОДНОЕ ЗВЕНО – звено, совершающее движение, для выполнения которого предназначен механизм. Выходное звено соединено с исполнительным устройством (рабочим органом, указателем прибора), либо со входным звеном другого механизма.

Звенья соединяются друг с другом подвижно посредством кинематических пар: вращательных (шарнир) и поступательных (ползун).

ТРАЕКТОРИЯ движения точки (звена) – линия перемещения точки в плоскости. Это может быть прямая линия или кривая.

РЫЧАЖНЫЕ МЕХАНИЗМЫ

Рычажными механизмами называют механизмы, в которые входят жесткие звенья, соединенные между собой вращательными и поступательными кинема­тическими парами. Простейшим рычажным механизмом является двухзвенный механизм , состоящий из неподвижного звена-стойки 2 (Рис.1.1 ) и подвижного рычага 1 , имеющего возможность вращаться вокруг неподвижной оси (обычно это начальный механизм).

Рис.1.1 Двухзвенный рычажный механизм

К двухзвенным рычажным механизмам относятся механизмы многих ро­тационных машин: электромоторов, лопастных турбин и вентиляторов. Меха­низмы всех этих машин состоят из стойки и вращающегося в неподвижных подшипниках звена (ротора).

Более сложными рычажными механизмами являются механизмы, состоя­щие из четырех звеньев, так называемые четырехзвенные механизмы .

На Рис.1.2 показан механизм шарнирного четырехзвенника, состоящего из трех подвижных звеньев 1, 2, 3 и одного неподвижного звена 4. Звено 1 , со­единенное со стойкой, может совершать полный оборот и носит название кри­вошипа. Такой шарнирный четырехзвенник, имеющий в своем составе один кривошип и одно коромысло называется кривошипно-коромысловым меха­низмом , где вращательное движение кривошипа посредством шатуна преобразуется в качательное движение коромысла. Если кривошип и шатун вытянуты в одну линию, то коромысло займет крайнее правое положение, а при наложении друг на друга – левое.

Рис. 1.2 Механизм шарнирного четырехзвенника

Примером такого механизма является механизм представленный на Рис.1.3 , где звено 1 – кривошип (входное звено), звено 2 – шатун, звено 3 – ко­ромысло. Точка M S двигаясь по кривой описывает траекторию . Одни траектории могут быть воспроизведены рычажными механизмами теоретически точно, другие – приближенно, с достаточной для практики степе­нью точности.

Рассматриваемый механизм, называемый симметричным механизмом Чебышева, часто применяют в качестве кругового направляющего механизма, у которого АВ = ВС = ВМ = 1. При указанных соотношениях

Рис. 1.3 Кривошипно-коромысловый механизм

точка М шатуна АВ описывает траекторию, симметричную относительно оси n - п . Угол наклона оси симметрии к линии центров СО определяется: ÐМСО = π – Ω / 2. Часть траектории точки М является дугой окружности радиуса О 1 М, что может быть использовано в механизмах с остановкой выходного звена.

Другим примером четырехзвенника является широко распро­страненный в технике кривошипно-ползунный механизм (Рис. 1.4 ).

Рис. 1.4 Кривошипно-ползунный механизм

В этом механизме вместо коромысла устанавливается ползун, движущийся в непод­вижной направляющей. Этот кривошипно-шатунный механизм применяют в поршневых двигателях, насосах, компрессорах и т.д. Если эксцентриситет е равен нулю, то получим центральный кривошипно-ползунный механизм или аксиальный. При е не равном нулю кривошипно-ползунный механизм называ­ется нецентральным или дезаксиальным. Здесь вращение кривошипа ОА через шатун АВ преобразуется в возвратно-поступательное движение ползуна. Есте­ственно крайние положения ползуна, будут при расположении кривошипа и шатуна в одну линию.

Если в рассмотренном механизме заменить неподвиж­ную направляющую на подвижную, которая называется кулисой, то получим четырехзвенный кулисный механизм с кулисным камнем. Примером такого механизма может слу­жить кулисный механизм строгального станка (Рис.1.5 ). Кривошип 1 , враща­ясь вокруг оси, через кулисный камень 2 заставляет кулису 3 совершать качательное движение. При этом кулисный камень относительно кулисы движется возвратно-поступательно.

Рис. 1.5 Четырехзвенный кулисный механизм

Крайние положения кулисы будут при перпендикулярном расположении к ней кривошипа. Построить такие положения просто: изображается окружность радиусом равным длине кривошипа (траектория движения точки А ), и проводятся касательные из оси вращения кулисы.

Таким образом звенья могут совершать поступательное , вращательное или сложное движения.

1. Назначение механизма и их классификация

Механизм - устройство, предназначенное для выполнения определенных и целесообразных движений.

Классификация:

По назначению:

М-мы двигателей;- передаточные механизмы;

Исполнительные м-мы;- м-мы управления, управления и регулирования;- м-мы счета, измерения, взвешивания

М-мы подачи и сортировки

По конструктивному признаку:

Рычажные;- кулачковые- зубчатые- кулисные

В зависимости от траектории движения звеньев:

Плоские- пространственные

Сложные механические системы (машина, автоматы, вычислительные устройства) – сочетания простых механизмов.

Простой (элементарный) м-зм - м-зм, кот. нельзя разложить на более простые м-змы.

2.Структура механизмов.

Любая машина состоит из деталей.

Деталь - элементарная часть машины, которая выполнена из однородного материала или не может быть разобрана на более простые части (зубчатое колесо, валы, болты).

Различают детали общего (встречаются в большинстве машин) и специального (встреча-ся в спец-х, особых машинах) назначения.

Твёрдые тела, составляющие механизм называют звеньями . Звено может состоять из нескольких деталей, соединённых неподвижно.

Стойка - неподвижное звено.

Совокупность двух звеньев имеющих относительное движение называют кинематической парой .

Условия существования к.п.:

1. Наличие двух звеньев.

2. Непосредственный контакт.

3. Возможность относительного движения.

Коромысло – звено, совершающее вращательное движение.

Бывают вращательные, поступательные к.п.. Звенья могут соприкасаться между собой в точке, по линии или по поверхности (образуя к.п.). К.п. накладывают ограничения на относительное движение звеньев. Эти ограничения называют связями .

3.Классификация кинематических пар.

К.П. - совокупность 2-х звеньев, имеющих относит. движ.

Услов.сущ.к.п.:-наличие 2 звеньев

Непосредств.контакт

Возмож.относ.движ.

Звенья могут соприкос.между собой, образ.к.п.в точке, по линии, по плоскости.

К.п. наклад.огранич.на относит.движение звеньев. Эти огранич.назыв.связями.

К.п. классифиц.по:

1.по виду элементов соприкосновения

если элем.соприкоснов.-поверхность,то к.п.низшая.

если контакт звеньев по линии или в точке,то к.п.высшая.

2.по хар-ру относит.движения звеньев –плоские

Пространственные

3.по числу связей, накладыв.на относит.движ.звеньев:1,2,3,4,5 класса

4.Кинематические цепи .

Сочетания звеньев вх-х в кин-ую пару наз-т кин-ой цепью. КЦ бывают простые, сложные, замкнутые, разомкнутые. Мех-зм – такая КЦ в кот при заданном движ-ии одного или неск-х ведущих звеньев остальные движ-ся вполне опред-ым образом. Все звенья делятся на 3 группы: 1-Группа ведущих звеньев. З-н движ-я в ведущих звеньях обычно задается. 2-Ведомые звенья. З-н движ-я ведомых звеньев зав-т от з-на движ-я ведущих звеньев. 3-Стойка мех-зма. Плоским мех-ом наз такой мех-зм, звенья кот. движ-ся в одной или неск-х // пл-ях. W=3n-2p 5 -p 4 – степень подвижн-ти плоского мех-зма, где W-число степеней подвижности, должно соотв-ть числу ведущих звеньев, n-число подвиж-х звеньев, p 5 число пар 5-го класса (соотв-о p 4).

5. Фрикционные передачи(механизмы)

Передача основана на использовании сил трения

Преимущества:

· Простота, безступенч. регулирование перед. числа

· Плавность бесшумность работы передачи

· Надёжность соединения

· При перегрузке происходит проскальзование катков, это предохраняет механизм от поломки

Недостатки:

· Большие давления на валы и опоры

· Износ рабочих поверхностей

· Непостоянство передаточного числа (из-за проскальзывания катков)

· Небольшая нагрузочная способность до 20 кВт

Передачи классифицируют:

1. По расположению валов

а) циллиндрическая(оси | |)

б) оси пересекаются – передача коническая

в) оси перекрещиваются – передача реечная

Для повышения нагрузочной способности катки изготовляют клинчатыми

2. По характеру силы прижатия катков:

а) с постоянной силой прижатия

б) с переменной силой прижатия

В зависимости от передоваемой нагрузки, чтобы обеспечить непосредственный контакт катков сила прижатия автоматически изменяеться.

3. Передачи делятся на:

а) с условно-постоянным передаточным числом

б) с переменным передаточным числом (вариаторы)

Fтр>F(вн нагр.)

Qf=kF Q=kF/f – сила нажатия

к – кооф. запаса сцепления

f - кооф. трения скольжения

Передачи с плавнорегулируемым передаточным числом назыв вариаторами

По конструкции вариаторы разнообразны

U=x/2, 0

Условная скорость

Передача.

Преимущества:

Плавное изменение передаточного числа => изменение значения угловой скорости ведомого звена и может быть изменено направление вращения ведомого звена.

По конструкции: * с непосредственным контактом, * с промежуточным контактом.

Широко применяется в приборостроении, даже в промышленности.

6. Ремённые передачи: достоинства, недостатки. Характеристика плоскоремённой передачи.

Ремённая передача основана на использовании сил трения, состоит из ведущего и ведомого шкивов, ремня, надетого с натяжением.

«+»: простота конструкции, возможность передачи на большие расстояния: плоский-15м, клиновый-6,смягчает удары, гасит вибрацию,предохраняет то перегрузки.

«-»: большие давления на валы и опоры по сравнению с зубчатой передачей; непостоянство передаточного числа (из-за проскальзывания);низкая долговечность ремней; необходимость применения натяжных устройств.

Передачи классифицируют:

1. По форме профиля ремня

· Плоскоремённая Клиноремённая

· Круглоремённая Зубчатая

2. По скорости вращения

· Тихоходные

· Среднескоростные

· Скоростные

Плоскоремённая передача

Применяется при высоких скоростях вращения, при большом расстоянии между валами (до 15 м).

Виды плоскоременной передачи

· Открытая

· Полуперекрёстная

· Перекрестная

· Перекрестная

К основным параметрам относятся:

α – угол обхвата шкива ремнём (ведущего)

а – межосевое расстояние

L – длина ремня

7.Клиноременная передача, основные параметры. Виды ремней.

Применяется для передачи мощности на большие или малые расстояния, но может передавать момент до 6 м. Нагрузочная способность клиноременной передачи в 3 раза больше плоской (при одинаковых параметрах). Применяется в электродвигателях. Может состоять от одного до 6 ремней. Число ремней зависит от передаваемой мощности. Большое количество ремней не рекомендуется, так как нагрузка между ремнями распределяется неравномерно. Виды плоских ремней. 1.Резино-тканевые ремни: изготовляют 3 типов: А,Б,В. Ремень состоит из нескольких слоев бельтинга с резинов. Прокладками. Обладает достаточной прочностью, гибкостью, но не рекомендуется применять среди кислот и щелочей.2. Ремни из синтетических материалов. Применяют при скоростях до 100 м/с. Высокая гибкость, износоустойчивость.3. Х/б ремни Применяются в тихоходных передачах.4.Кожаные ремни: большая прочность, гибкость, эластичность, стоимость, поэтому ограничен. применение.5. Шерстяные ремни. Ограничен. применение. Клиноременные ремни. Кордотканевые и кордошнуровые. Выпускают несколько типов, отличающ. друг от друга размерами поперечного сечения: О,А,Б,В,Г,Д,Е. При выборе типа ремня учитывается передаваемая мощность.{Приводные ремни. Должны быть достаточно прочными, долговечными, износоустойчивыми и иметь невысокую стоимость.}

Министерство транспорта Российской Федерации

Федеральное агентство морского и речного транспорта

Крымский филиал

ФГБОУ ВПО

«Государственный морской университет имени адмирала Ф.Ф.Ушакова»

Кафедра "Фундаментальные дисциплины"

Теория механизмов и машин

Курсовой проект

Плоский рычажный механизм

Пояснительная записка

Проект разработал: ст. гр. _

_____________________________

Руководитель проекта: проф. Буров В.С.

Севастополь 2012


1. Кинематический анализ плоского рычажного механизма................................................... 3

1.1. Построение механизма в 12 положениях.................................................................................. 3

1.2. Построение планов мгновенных скоростей............................................................................. 4

1.3. Построение планов мгновенных ускорений............................................................................ 5

1.4. Построение диаграммы перемещений....................................................................................... 8

1.5. Построение диаграммы скоростей............................................................................................. 9

1.6. Построение диаграммы ускорений............................................................................................ 9

2. Силовой анализ плоского рычажного механизма................................................................ 10

2.1. Определение нагрузок, действующих на звенья механизма................................................ 10

2.2. Силовой расчёт группы звеньев 7, 6........................................................................................ 12

2.3. Силовой расчёт группы звеньев 4, 5........................................................................................ 13

2.4. Силовой расчёт группы звеньев 2, 3........................................................................................ 14

2.5. Силовой расчёт ведущего звена............................................................................................... 15

2.6. Силовой расчёт ведущего звена методом Жуковского.......................................................... 15

3. Синтез зубчатого механизма..................................................................................................... 16

3.1. Определение геометрических параметров зубчатого механизма........................................ 16

3.2. Построение плана линейных скоростей.................................................................................. 19



3.3. Построение плана угловых скоростей..................................................................................... 20

4. Синтез кулачкового механизма................................................................................................ 21

4.1. Построение графика аналогов ускорений............................................................................... 21

4.2. Построение графика аналогов скоростей................................................................................ 22

4.3. Построение графика аналогов перемещений......................................................................... 22

4.4. Нахождение минимального начального радиуса кулачка..................................................... 22

4.5. Построение профиля кулачка................................................................................................... 23

Список литературы........................................................................................................................ 24


1. Кинематический анализ плоского рычажного механизма.


Дано:

Схема плоский рычажного механизма.

Геометрические параметры механизма:

l ОА =125 мм;

l АВ =325 мм;

l АС =150 мм;

Необходимо построить механизм в 12 положениях, планы мгновенных скоростей для каждого из этих положений, планы мгновенных ускорений для любых 2-х положений, а также диаграммы перемещений, скоростей и ускорений.

1.1 Построение 12 положений плоского рычажного механизма.

Строим окружность радиусом ОА. Тогда масштабный коэффициент будет:

Выбираем начальное положение механизма и от этой точки делим окружность на 12 равных частей. Центр окружности (т. О) соединяем с полученными точками. Это и будут 12 положений первого звена.

Через т. О проводим горизонтальную прямую линию Х-Х. Затем строим окружности радиусом АВ с центрами в ранее полученных точках. Соединяем точки В 0 , В 1 , В 2 ,…,В 12 (пересечения окружностей с прямой Х-Х) с точками 0, 1, 2, …, 12. Получим 12 положений второго звена.

От т. О откладываем вверх отрезок b. Получим точку О 1 . Из неё радиусом О 1 D проводим окружность.

На отрезках АВ 0 , АВ 1 , АВ 2 , …, АВ 12 от точки А откладываем расстояние равное АС. Получим точки С 0 , С 1 , С 2 , …, С 12 . Через них проводим дуги радиусом DC до пересечения с окружностью с центром в точке О 1 . Соединяем точки С 0 , С 1 , С 2 , …, С 12 с полученными. Это будут 12 положений третьего звена.

Точки D 0 , D 1 , D 2 , …, D 12 соединяем с т. О 1 . Получим 12 положений четвёртого звена.

От самой верхней точки окружности с центром в т.О1 откладываем горизонтально отрезок равный a. Через его конец проводим вертикальную прямую Y-Y. Далее из точек D 0 , D 1 , D 2 , …, D 12 строим дуги радиусом DE до пересечения с полученной прямой. Соединяем эти точки с вновь полученными. Это будут 12 положений пятого звена.

Учитывая масштабный коэффициент , размеры звеньев будут:

АВ= l АВ * =325*0.005=1,625 м;

АС= l АС * =150*0,005=0,75 м;

СD= l CD * =220*0.005=1.1 м;

О 1 D= l О1 D * =150*0,005=0,75 м;

DЕ=l DE * =200*0,005=1 м;

а 1 = а* =200*0,005=1 м;

b 1 = b* =200*0.005=1 м.

1.2 Построение планов мгновенных скоростей.

Для построения плана скоростей механизма существуют различные методы, наиболее распространённым из которых является метод векторных уравнений.

Скорости точек О и О 1 равны нулю, поэтому на плане скоростей совпадают с полюсом плана скоростей р.

Положение 0:

Но скорость т.В совпала с полюсом р, следовательно V B =0, а это значит, что скорости всех остальных точек тоже совпадут с полюсом и будут равны нулю.

Аналогично строятся планы мгновенных скоростей для положений 3, 6, 9, 12.

Положение 1 :

Скорость т.А получаем из уравнения:

Линия действия вектора скорости т.А перпендикулярна звену ОА, а сам направлен в сторону вращения звена.

На плане мгновенных скоростей строим отрезок (pа) ┴ ОА, его длина (ра)=45мм. Тогда масштабный коэффициент равен:

Скорость т.В получаем из уравнений:

, где V BA ┴ ВА, а V ВВ0 ║Х-Х

Из т.a на плане скоростей строим прямую ┴ звену ВС, а из т.р проводим горизонтальную прямую. В пересечении получим т.b. Соединяем т.а и т.b. Это будет вектор скорости т.В (V B).

V B = pb* = 0.04*15.3 = 0.612

Скорость т.С определяем с помощью теоремы подобия и правила чтения букв. Правило чтения букв заключается в том, что порядок написания букв на плане скоростей или ускорений жёсткого звена должен в точности соответствовать порядку написания букв на самом звене.

Из пропорции:

Можно определить длину отрезка ас:

Отложим от т.а отрезок равный 19,2 мм, получим т.с, соединим её с полюсом, получим вектор скорости т.С (V C).

Скорость т.D определяется с помощью решения системы геометрических уравнений:

, где V DC ┴ DC, а V DO 1 ┴ DO 1

Из т.c на плане скоростей строим прямую ┴ звену DС, а из т.р проводим прямую ┴ DO 1 . В пересечении получим т.d. Соединяем т.d с полюсом, получим вектор скорости т.D (V D).

V D = pd* = 0.04*37.4 = 1.496

Скорость т.Е находим также из решения системы уравнений:

, где V ED ┴ ED, а V EE 0 ║Y-Y

Из т.d на плане скоростей строим прямую ┴ звену DE, а из т.р проводим вертикальную прямую. В пересечении получим т.е. Соединяем т.а и т.b. Это будет вектор скорости т.В (V B).

V Е = pе* = 0.04*34,7 = 1,388

Аналогично строятся планы мгновенных скоростей для 2, 3, 4, 5, 7, 8, 10, 11 положений механизма.

1.3 Построение планов мгновенных ускорений.

Ускорения точек О и О 1 равны нулю, поэтому на плане ускорений они совпадут с полюсом плана ускорений π.

Положение 0:

Ускорение точки А находим:

На плане мгновенных ускорений строим отрезок πа ║ ОА, его длина (πа)=70 мм. Тогда масштабный коэффициент:

Направление ускорения т.В и т.А ║ прямой Х-Х, ┴ ВА, следовательно ускорение т.В совпадёт с концом вектора мгновенного ускорения т.А, а это значит, что и ускорения всех остальных точек механизма совпадут с ним.

Положение 7:

Ускорение точки А находим:

На плане мгновенных ускорений строим отрезок πа ║ ОА, его длина (πа)=70 мм.

Ускорение точки В можно найти с помощью решения векторного уравнения:

От т.а откладываем отрезок равный 21 мм ║ АВ, затем от конца полученного вектора строим отрезок ┴ АВ, а через полюс проводим горизонтальную прямую. Соединяя тоску пересечения с полюсом, получим вектор ускорения т.В.

Ускорение т.C находим с помощью теоремы подобия и правила чтения букв:

Следовательно

Ускорение точки D можно найти с помощью решения системы векторных уравнений:

От т.с откладываем отрезок равный 14,5 мм ║ DC, затем от конца полученного вектора строим отрезок ┴ DС.

Из т. π строим отрезок равный 1,75 мм ║ O 1 D, затем через конец полученного вектора проводим прямую ┴ O 1 D. Соединяя точку пересечения прямой ┴ O 1 D и прямой ┴ DС с полюсом, получим вектор ускорения т.D.

Ускорение точки E можно найти с помощью решения системы векторных уравнений:

Направление ускорения точки E ║ ED, поэтому через полюс проводим горизонтальную прямую, а от т.конца вектора ускорения т.D строим отрезок равный 1,4 мм ║ ED, затем от конца полученного ве6ктора проводим прямую ┴ ЕD. Соединяя точку пересечения прямой ║ ED и прямой ┴ ЕD с полюсом, получаем вектор ускорения точки Е.

1.4 Построение диаграммы перемещений выходного звена.

Диаграмма перемещений выходного звена получается в результате построения отрезков, которые берутся с чертежа плоского рычажного механизма в 12 положениях с учётом масштабного коэффициента

1.5 Построение диаграммы скоростей выходного звена.

Диаграмма скоростей выходного звена получается в результате графического дифференцирования методом приращений диаграммы перемещений выходного звена. Этот метод по сути является методом хорд. Если постоянное полюсное расстояние Н взять равным величине интервала Δt, тогда нет необходимости в проведении лучей через полюс П, так как в этом случае отрезки h i являются приращениями функции S(t) на интервале Δt.

Т. е. на диаграмме перемещений строится вертикальный отрезок от первого деления до пересечения с графиком. Затем из точки пересечения откладывается горизонтальный отрезок до пересечения со следующим делением. Потом от полученной точки снова откладывается вертикальный отрезок до пересечения с графиком. Так повторяется до окончания графика. Полученные отрезки строят на диаграмме скоростей с учётом масштабного коэффициента, но не от первого деления, а на пол деления раньше:

1.6 Построение диаграммы ускорений выходного звена.

Строится аналогично диаграмме скоростей выходного звена механизма


2. Силовой анализ плоского рычажного механизма.

Дано:

l ОА = 125 мм;

l АВ = 325 мм;

l АС = 150 мм;

l CD = 220 мм;

l О1 D = 150 мм;

l DE = 200 мм;

F max = 6.3 кН;

m К = 25 кг/м;

Диаграмма сил полезных сопротивлений.

Необходимо определить реакции в кинематических парах и уравновешивающий момент на входном валу механизма.

2.1 Определение нагрузок, действующих не звенья механизма.

Вычислим силы тяжести. Равнодействующие этих сил расположены в центрах масс звеньев, а величины равны:

G 1 = m 1 * g = m К * l ОА * g = 25 * 0.125 * 10= 31.25 H

G 2 = m 2 * g = m К * l B А * g = 25 * 0.325 *10 = 81.25 H

G 3 = m В * g = 20 * 10 = 200 Н

G 4 = m 4 * g = m К * l CD * g = 25 * 0.22 * 10 = 55 H

G 5 = m 5 * g = m К * l О 1D * g = 25 * 0.15 * 10 = 37,5 H

G 6 = m 6 * g = m К * l DE * g = 25 * 0.2 * 10 = 50 H

G 7 = m 7 * g = 15 * 10 = 150 H

Найдём силу полезного сопротивления по диаграмме сил полезных сопротивлений. Для рассматриваемого положения механизма эта сила равна нулю.

Данных для вычисления сил вредных сопротивлений нет, поэтому их не учитываем.

Для определения инерционных нагрузок требуются ускорения звеньев и некоторых точек, поэтому воспользуемся планом ускорений для рассматриваемого положения механизма.

Определим силы инерции звеньев. Ведущее звено, как правило, уравновешено, то есть центр масс его лежит на оси вращения, а равнодействующая сил инерции равна нулю. Для определения сил инерции других звеньев механизма предварительно определим ускорения их центров масс:

а S2 = * πS 2 = 0.4 * 58.5 = 23.4 м/с 2

а B = * πb = 0,4 * 64.9 = 25.96 м/с 2

а S4 = * πS 4 = 0.4 * 65.7 = 26.28 м/с 2

а D = * πd = 0,4 * 78.8 = 31.52 м/с 2

а S6 = * πS 6 = 0.4 * 76.1 = 30.44 м/с 2

а E = * πe = 0,4 * 74.5 = 29.8 м/с 2

Теперь определим силы инерции:

F И2 = m 2 * а S2 = 8.125 * 23.4 = 190 H

F И3 = m 3 * а B = 20 * 25.96 = 519 H

F И4 = m 4 * а S4 = 5.5 * 26.28 = 145 H

F И6 = m 6 * а S6 = 5 * 30.44 = 152 H

F И7 = m 7 * а E = 15 * 29.8 = 447 H

Для определения моментов сил инерции необходимо найти моменты инерции масс звеньев и их угловые ускорения. У звеньев 3 и 7 массы сосредоточены в точках, у звена 1 и угловое ускорение равно нулю, поэтому моменты сил инерции этого звена равна нулю.

Примем распределение массы звеньев 2, 4 и 6 равномерно по их длинам. Тогда инерция звеньев относительно точек S i равен:

J S 2 = m 2 * l 2 2 /12 = 8,125 * 0,325 2 /12 = 0,0715 кг*м 2

J S 4 = m 4 * l 4 2 /12 = 5,5 * 0,22 2 /12 = 0,0222 кг*м 2

J S 6 = m 6 * l 6 2 /12 = 5 * 0,2 2 /12 = 0,0167 кг*м 2

Угловые ускорения звеньев 2, 4, 5 и 6 определяются по относительным тангенциальным ускорениям, поэтому:

Найдём моменты сил инерции 2, 4, 6 звеньев:

М И2 = J S 2 * = 0,0715 * 82,22 = 5,88 Нм

М И4 = J S 4 * = 0,0222 * 42,73 = 0,95 Нм

М И6 = J S 4 * = 0,0167 * 35,6 = 0,59 Нм

2.2 Силовой расчёт группы звеньев 6, 7.

Выделим из механизма группу звеньев 6, 7, расставим все реальные нагрузки и силы и моменты сил инерции.

Действие на рассматриваемую группу отброшенных звеньев заменим силами. В т.Е на ползун 7 действует сила со стороны стойки - направляющей ползуна. В отсутствии трения сила взаимодействия направлена перпендикулярно к контактирующим поверхностям, т. е. перпендикулярно направлению движения ползуна, а влево или вправо, пока не известно, поэтому направим эту силу предварительно вправо. Если после вычислений окажется, что она отрицательна, то необходимо изменить направление на противоположное.

В индексе обозначения ставятся две цифры: первая показывает со стороны какого звена действует сила, а вторая - на какое звено эта сила действует.

В точке D со стороны звена 5 на звено 6 действует сила R 56 . Ни величина, ни направление этой силы неизвестны, поэтому определяем её по двум составляющим: одну направим вдоль звена и назовём нормальной составляющей, а вторую перпендикулярно звену и назовём тангенциальной составляющей. предварительное направление этих составляющих выбираем произвольно, а действительное направление определиться знаком силы после вычислений.

На ползун Е действует ещё сила полезного сопротивления, но она равна нулю.

Расставим на выделенной группе звеньев все перечисленные силы и определим неизвестные реакции в кинематических парах Е, D - R E и R 56 .

Сначала определяем тангенциальную составляющую силы R 56 из условия равновесия звена 6. Приравняв нулю сумму моментов сил относительно точки Е, получим:

Момент сил инерции необходимо делить на потому, что звенья изображены в масштабе , и в расчётах используются их значения снятые с чертежа.

Нормальная составляющая силы R 56 и сила R E находятся графическим методом из векторного многоугольника, построенного для группы звеньев 6, 7. Известно, что при силовом равновесии многоугольник, составленный из векторов сил, должен быть замкнутым:

Так как направления линий действия нормальной составляющей силы R 56 и R E известны, то построив предварительно незамкнутый многоугольник из известных векторов сил, можно обеспечить его замыкание, если провести через начало первого и конец последнего вектора прямые, параллельные направлениям искомых сил. Точка пересечения этих прямых определит величины искомых векторов и их действительные направления.

Из построений видно, что направление силы R 76 - от n к m, а силы R 67 - от m к n.

R 56 = * = 1/4 * 209,7 = 52.43 Н

R E = * = 1/4 * 69,3 = 17.33 Н

2.3 Силовой расчёт группы звеньев 5,4.

Выделим из механизма группу звеньев 4, 5, расставим все реальные нагрузки и силы и моменты сил инерции, реакции отброшенных звеньев. В точке D действует сила R 65 , которая равна R 56 и направлена противоположно ей.

Неизвестными являются: сила взаимодействия 4 и 2 звена, сила взаимодействия 5 звена и стойки.

В точке С со стороны звена 2 на звено 4 действует сила R 24 . Ни величина, ни направление этой силы неизвестны, поэтому определяем её по двум составляющим: одну направим вдоль звена и назовём нормальной составляющей, а вторую перпендикулярно звену и назовём тангенциальной составляющей. предварительное направление этих составляющих выбираем произвольно, а действительное направление определиться знаком силы после вычислений.

Сначала определяем тангенциальную составляющую силы R 24 из условия равновесия звена 4. Приравняв нулю сумму моментов сил относительно точки D, получим:

Нормальная составляющая силы R 24 и сила R O 1 находятся графическим методом из векторного многоугольника, построенного для группы звеньев 5, 4. Известно, что при силовом равновесии многоугольник, составленный из векторов сил, должен быть замкнутым:

Определим величины реакций в кинематических парах:

R 24 = * = 1 * 26.6 = 26.6 Н

R O 1 = * = 1 * 276.6 = 276.6 Н

2.4 Силовой расчёт группы звеньев 2, 3.

Выделим из механизма группу звеньев 2, 3, расставим все реальные нагрузки и силы и моменты сил инерции, реакции отброшенных звеньев. В точке C действует сила R 24 , которая равна R 24 и направлена противоположно ей.

Неизвестными являются: сила взаимодействия 1 и 2 звена, сила взаимодействия 2 звена и ползуна.

В точке С со стороны звена 1 на звено 2 действует сила R 12 . Ни величина, ни направление этой силы неизвестны, поэтому определяем её по двум составляющим: одну направим вдоль звена и назовём нормальной составляющей, а вторую перпендикулярно звену и назовём тангенциальной составляющей. предварительное направление этих составляющих выбираем произвольно, а действительное направление определиться знаком силы после вычислений.

Сначала определяем тангенциальную составляющую силы R 12 из условия равновесия звена 2. Приравняв нулю сумму моментов сил относительно точки А, получим:

Нормальная составляющая силы R 12 и сила R В находятся графическим методом из векторного многоугольника, построенного для группы звеньев 2, 3. Известно, что при силовом равновесии многоугольник, составленный из векторов сил, должен быть замкнутым:

Так как направления линий действия нормальной составляющей силы R 24 и R O 1 известны, то построив предварительно незамкнутый многоугольник из известных векторов сил, можно обеспечить его замыкание, если провести через начало первого и конец последнего вектора прямые, параллельные направлениям искомых сил. Точка пересечения этих прямых определит величины искомых векторов и их действительные направления.

Определим величины реакций в кинематических парах:

R 12 = * = 1/2 * 377,8 = 188,9 Н

R В = * = 1/2 * 55,4 = 27,7 Н

2.5 Силовой расчёт ведущего звена.

Ведущее звено обычно уравновешено, то есть центр масс его находится на оси вращения. Для этого требуется, чтобы сила инерции противовеса, установленного на продолжении кривошипа ОА, равнялась силе инерции звена ОА:

m = M 1 /l OA = 3.125/0.125 = 25 кг - масса единицы длины.

Отсюда можно определить массу противовеса m 1 , задавшись её расстоянием r 1 от оси вращения. При r 1 = 0,5 * l m 1 = M 1 (масса звена ОА).

В точке А на 1 звено со стороны 2 звена действует сила R 21 , момент которой относительно точки О равен уравновешивающему моменту.

В точке О при этом возникает реакция R О, равная и противоположно направленная силе R 21 . Если сила тяжести звена соизмерим с силой R 21 , то её необходимо учесть при определении реакции опоры О, которая может быть получена из векторного уравнения:

2.6 Силовой расчёт ведущего звена методом Жуковского.

К плану мгновенных скоростей механизма, повернутому на 90 0 в сторону вращения, прикладываем все силы, действующие на механизм, и составляем уравнение моментов действующих сил относительно полюса.