Приведение к каноническому виду билинейной формы онлайн. Приведение кривой второго порядка к каноническому виду

Приведение квадратичной формы к каноническому виду.

Канонический и нормальный вид квадратичной формы.

Линейные преобразования переменных.

Понятие квадратичной формы.

Квадратичные формы.

Определение: Квадратичной формой от переменных называется однородный многочлен второй степени относительно этих переменных.

Переменные можно рассматривать как аффинные координаты точки арифметического пространства А n или как координаты вектора n-мерного пространства V n . Будем обозначать квадратичную форму от переменных как.

Пример 1:

Если в квадратичной форме уже выполнено приведение подобных членов, то коэффициенты при обозначаются, а при () – . Т.о., считается, что. Квадратичную форму можно записать следующим образом:

Пример 2:

Матрица системы (1):

– называется матрицей квадратичной формы.

Пример: Матрицы квадратичных форм примера 1 имеют вид:

Матрица квадратичной формы примера 2:

Линейным преобразованием переменных называют такой переход от системы переменных к системе переменных, при котором старые переменные выражаются через новые с помощью форм:

где коэффициенты образуют невырожденную матрицу.

Если переменные рассматривать как координаты вектора в евклидовом пространстве относительно некоторого базиса, то линейное преобразование (2) можно рассматривать как переход в этом пространстве к новому базису, относительно которого этот же вектор имеет координаты.

В дальнейшем мы будем рассматривать квадратичные формы только с действительными коэффициентами. Будем считать, что и переменные принимают только действительные значения. Если в квадратичной форме (1) переменные подвергнуть линейному преобразованию (2), то получится квадратичная форма от новых переменных. В дальнейшем мы покажем, при надлежащем выборе преобразования (2) квадратичную форму (1) можно привести к виду, содержащему только квадраты новых переменных, т.е. . Такой вид квадратичной формы называется каноническим . Матрица квадратичной формы в таком случае диагональная: .

Если все коэффициенты могут принимать лишь одно из значений: -1,0,1 соответствующий вид называется нормальным .

Пример: Уравнение центральной кривой второго порядка с помощью перехода к новой системе координат

можно привести к виду: , а квадратичная форма в этом случае примет вид:

Лемма 1: Если квадратичная форма (1) не содержит квадратов переменных, то с помощью линейного преобразования ее можно привести в форму, содержащую квадрат хотя бы одной переменной.

Доказательство: По условию, квадратичная форма содержит только члены с произведениями переменных. Пусть при каких-либо различных значениях i и j отличен от нуля, т.е. – один из таких членов, входящих в квадратичную форму. Если выполнить линейное преобразование, а все остальные не менять, т.е. (определитель этого преобразования отличен от нуля), то в квадратичной форме появится даже два члена с квадратами переменных: . Эти слагаемые не могут исчезнуть при приведении подобных членов, т.к. каждый из оставшихся слагаемых содержит хотя бы одну переменную, отличную или от или от.



Пример:

Лемма 2: Если квадратная форма (1) содержит слагаемое с квадратом переменной , напримери еще хотя бы одно слагаемое с переменной , то с помощью линейного преобразования , f можно перевести в форму от переменных , имеющую вид: (2), где g – квадратичная форма, не содержащая переменной .

Доказательство: Выделим в квадратичной форме (1) сумму членов, содержащих: (3) здесь через g 1 обозначена сумма всех слагаемых, не содержащих.

Обозначим

(4), где через обозначена сумма всех слагаемых, не содержащих.

Разделим обе части (4) на и вычтем полученное равенство из (3), после приведения подобных будем иметь:

Выражение в правой части не содержит переменной и является квадратичной формой от переменных. Обозначим это выражение через g, а коэффициент через, а тогда f будет равно: . Если произвести линейное преобразование: , определитель которого отличен от нуля, то g будет квадратичной формой от переменных, и квадратичная форма f будет приведена к виду (2). Лемма доказана.

Теорема: Любая квадратичная форма может быть приведена к каноническому виду с помощью преобразования переменных.

Доказательство: Проведем индукцию по числу переменных. Квадратичная форма от имеет вид: , которое уже является каноническим. Предположим, что теорема верна для квадратичной формы от n-1 переменных и докажем, что она верна для квадратично формы от n переменных.

Если f не содержит квадратов переменных, то по лемме 1 ее можно привести к виду, содержащему квадрат хотя бы одной переменной, по лемме 2 полученную квадратичную форму можно представить в виде (2). Т.к. квадратичная форма является зависимой от n-1 переменных, то по индуктивному предположению она может быть приведена к каноническому виду с помощью линейного преобразования этих переменных к переменным, если к формулам этого перехода еще добавить формулу, то мы получим формулы линейного преобразования, которое приводит к каноническому виду квадратичную форму, содержащуюся в равенстве (2). Композиция всех рассматриваемых преобразований переменных является искомым линейным преобразованием, приводящим к каноническому виду квадратичную форму (1).

Если квадратичная форма (1) содержит квадрат какой-либо переменной, то лемму 1 применять не нужно. Приведенный способ называется методом Лагранжа .

От канонического вида, где, можно перейти к нормальному виду, где, если, и, если, с помощью преобразования:

Пример: Привести к каноническому виду методом Лагранжа квадратичную форму:

Т.к. квадратичная форма f уже содержит квадраты некоторых переменных, то лемму 1 применять не нужно.

Выделяем члены, содержащие:

3. Чтобы получить линейное преобразование, непосредственно приводящее форму f к виду (4), найдем сначала преобразования, обратные преобразованиям (2) и (3).

Теперь, с помощью этих преобразований построим их композицию:

Если подставить полученные значения (5) в (1), мы сразу же получим представление квадратичной формы в виде (4).

От канонического вида (4) с помощью преобразования

можно перейти к нормальному виду:

Линейное преобразование, приводящее квадратичную форму (1) к нормальному виду, выражается формулами:

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с.

Лекция №26 (II семестр)

Тема: Закон инерции. Положительно определённые формы.

Квадратичная форма называется канонической, если все т. е.

Всякую квадратичную форму можно привести к каноническому виду с помощью линейных преобразований. На практике обычно применяют следующие способы.

1. Ортогональное преобразование пространства :

где - собственные значения матрицы A .

2. Метод Лагранжа - последовательное выделение полных квадратов. Например, если

Затем подобную процедуру проделывают с квадратичной формой и т. д. Если в квадратичной форме все но есть то после предварительного преобразования дело сводится к рассмотренной процедуре. Так, если, например, то полагаем

3. Метод Якоби (в случае, когда все главные миноры квадратичной формы отличны от нуля):

Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда прямая, через них проходящая, задается уравнениями:

= ; (3.3)

3) точкой M 1 (x 1 , y 1 , z 1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой .

Векторa называется направляющим вектором прямой .

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:

x = x 1 +mt, y = y 1 + nt, z = z 1 + рt. (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y , приходим к уравнениям прямой впроекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n 1 , n 2 ], где n 1 (A 1 , B 1 , C 1) и n 2 (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1 , y = y 1 ; прямая параллельна оси Oz.

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называетсяуравнением плоскости .

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая может принадлежать и не принадлежать плоскости. Она принадлежит плоскости, если хотя бы две точки ее лежат на плоскости.

Если прямая не принадлежит плоскости, она может быть параллельной ей или пересекать ее.

Прямая параллельна плоскости, если она параллельна другой прямой, лежащей в этой плоскости.

Прямая может пересекать плоскость под различными углами и, в частности, быть перпендикулярной ей.

Точка по отношению к плоскости может быть расположена следующим образом: принадлежать или не принадлежать ей. Точка принадлежит плоскости, если она расположена на прямой, расположенной в этой плоскости.

В пространстве две прямые могут либо пересекаться, либо быть параллельными, либо быть скрещенными.

Параллельность отрезков прямых сохраняется в проекциях.

Если прямые пересекаются, то точки пересечения их одноимённых проекций находятся на одной линии связи.

Скрещивающиеся прямые не принадлежат одной плоскости, т.е. не пересекаются и не параллельны.

на чертеже одноименные проекции прямых, взятые отдельно, имеют признаки пересекающихся или параллельных прямых.

Эллипс. Эллипсом называется геометрическое место точек, для которых сумма расстояний до двух фиксированных точек (фокусов) есть для всех точек эллипса одна и та же постоянная величина (эта постоянная величина должна быть больше, чем расстояние между фокусами).

Простейшее уравнение эллипса

где a - большая полуось эллипса, b - малая полуось эллипса. Если 2c - расстояние между фокусами, то между a , b и c (если a > b ) существует соотношение

a 2 - b 2 = c 2 .

Эксцентриситетом эллипса называется отношение расстояния между фокусами этого эллипса к длине его большой оси

У эллипса эксцентриситет e < 1 (так как c < a ), а его фокусы лежат на большой оси.

Уравнение гиперболы, изображенной на рисунке .

Параметры:
a, b – полуоси;
- расстояние между фокусами,
- эксцентриситет;
- асимптоты;
- директрисы.
Прямоугольник, изображенный в центре рисунка – основной прямоугольник, его диагонали есть асимптоты.