Миоглобин связывает кислород сильнее чем гемоглобин. Миоглобин: функции, нормы в крови и моче, повышение и понижение уровня

Миоглобин содержится в красных мышцах и участвует в запасании кислорода. В условиях кислородного голодания (например, при сильной физической нагрузке) кислород высвобождается из комплекса с миоглобином и поступает в митохондрии мышечных клеток, где осуществляется синтез АТР (окислительное фосфорилирование; см. гл. 13).

Первичная структура и распределение аминокислот

Миоглобин состоит из единичной полипептидной цепи с мол. массой 17000; никаких особенностей в характере составляющих его 153 аминокислотных остатков не обнаруживается. При анализе же их пространственного распределения четко выявляется одна особенность: на поверхности молекулы находятся полярные остатки, а внутри структуры - неполярные; это свойство характерно для глобулярных белков. Остатки, содержащие одновременно и полярные, и неполярные группы (например, Thr, Тrр, расположены так, что неполярные группы ориентируются внутрь глобулы. Если не считать двух остатков гистидина, принимающих участие в связывании кислорода, то внутренние области миоглобина содержат только неполярные остатки (например, Leu, Val, Phe, Met).

Вторичная и третичная структура миоглобина

Как показывает рентгеноструктурный анализ, миоглобин представляет собой компактную, примерно сферическую молекулу размером 4,5 х 3,5 х 2,5 нм (рис. 6.3). Примерно 75% остатков образуют восемь правых а-спиралей, содержащих от 7 до 20 остатков. Начиная с N-конца, спирали обозначают буквами от А до Н. Участки, соединяющие спирали, обозначают двумя буквами, указывающими соответствующие спирали. Индивидуальным остаткам присваивают букву, указывающую спираль, в которой они находятся, и порядковый номер, отсчитываемый от -конца спирали. Например, восьмой остаток в спирали F, им является гистидин. Остатки, далеко отстоящие друг от друга вдоль цепи (например, принадлежащие разным спиралям), могут быть пространственно сближены; например, довольно близко находятся остатки гистидина (проксимальный) и (дистальный) (рис. 6.3).

Ряд данных свидетельствует о том, что в растворе вторичная и третичная структуры миоглобина

Рис. 6.3. Модель молекулы миоглобина. Контуры - это очертания, наблюдаемые при низком разрешении. Изображены в основном только атомы а-углерода и гем. (Из статьи Dickerson R. Е. In: The Proteins, 2nd ed., Vol. 2. Neurath H. (editor). Academic Press, 1964, с любезного разрешения.)

близки к структуре кристаллического миоглобина. В обоих случаях наблюдаются практически идентичные спектры поглощения; кристаллический миоглобин связывает кислород; содержание а-спиралей в растворе, оцениваемое по дисперсии оптического вращения и круговому дихроизму, сходно с данными, полученными методом рентгеноструктурного анализа.

Влияние гема на конформацию миоглобина

При понижении pH до 3,5 образуется апомиоглобин (миоглобин, не содержащий гема), и содержание а-спиралей резко падает, а последующее добавление мочевины к апомиоглобину при нейтральном pH приводит к почти полному их исчезновению. Последующее удаление мочевины диализом и добавление гема полностью восстанавливает число а-спиралей, а добавление приводит к полному восстановлению биологической (кислородсвязываю-щей) активности. Таким образом, информация, содержащаяся в первичной структуре апомиоглобина, в присутствии гема однозначно детерминирует свертывание молекулы белка с образованием нативной, биологически активной конформации. Это важное положение распространяется и на другие белки: первичная структура белка определяет его вторичную и третичную структуру.

Пространственная ориентация атома железа, проксимального и дистального остатков гистидина в молекуле миоглобина

Гем в молекуле миоглобина расположен в щели между спиралями Е и F; его полярные пропионатные группы ориентированы к поверхности глобулы, а остальная часть находится внутри структуры и окружена неполярными остатками, за исключением Пятое координационное положение атома железа занято атомом азота гетероциклического кольца проксимального гистидина Дистальный гистидин расположен по другую сторону гемового кольца, почти напротив но шестое координационное положение атома железа остается свободным (рис. 6.4).

Расположение атома железа

В неоксигенированном миоглобине атом железа на 0,03 нм выступает из плоскости кольца в направлении . В оксигенированном миоглобине атом кислорода занимает шестое координационное положение атома железа, а сам атом железа выступает из плоскости гема только на 0,01 нм. Таким образом, оксигенирование миоглобина сопровождается смещением атома железа и, следовательно, и ковалентно связанных с ним остатков в направлении плоскости кольца; в результате эта область белковой глобулы принимает новую конформацию.

Рис. 6.4. Положение молекулы кислорода в теме после ок-сигснирования. Изображены также имидазольные кольца двух важных остатков гистидина в глобиновой цепи, которые располагаются рядом с атомом железа. (Из работы Harper Н. A. et al., Physioldgische Chemie. Springer-Vcrlag, 1975, с любезного разрешения.)

Лиганды

Связь, образующаяся между атомом кислорода и атомом при оксигенировании миоглобина направлена перпендикулярно плоскости кольца гема. Второй атом кислорода удален от дистального гистидина, и связь между атомами кислорода образует относительно плоскости гема угол 121° (рис. 6.5).

Рис. 6.5. Предпочтительные ориентации молекул кислорода и окиси углерода, связанных с атомом железа изолированного гема (темные полоски).

Окись углерода (СО) связывается с изолированным гемом примерно в 25 000 раз более прочно, чем кислород. Поскольку атмосферный воздух содержит следы СО и еще небольшое количество СО образуется в ходе нормального. катаболизма гема, возникает вопрос: почему же шестое координационное положение железа в миоглобине занято не СО, а молекулой 02? Связано это со стерическими ограничениями, возникающими в миоглобине. Молекула СО, связываясь с гемом, стремится принять такую ориентацию, при которой все три атома (Fe, находятся вдоль линии, перпендикулярной плоскости кольца гема (рис. 6.6). Для изолированного гема такая ориентация вполне возможна, но в миоглобине связыванию СО в такой ориентации стерически препятствует дистальный гистидин (рис. 6.6). Поэтому СО связывается в менее благоприятной конфигурации, что понижает прочность связи СО с гемом более чем на два порядка, так что она становится всего лишь в 200 раз прочнее, чем связь гем-02. Тем не менее небольшая часть молекул миоглобина (около 1%) в нормальных условиях связывает СО.

Кинетика оксигеиирования миоглобина

Почему миоглобин неспособен транспортировать кислород, но зато эффективно его запасает? Количество кислорода, связывающегося с миоглобином («процент насыщения»), зависит от концентрации кислорода в среде, непосредственно окружающей молекулу белка (эту концентрацию выражают как PQ - парциальное давление кислорода). Зависимость между количеством связанного кислорода и PQ можно представить графически в виде кривой насыщения миоглобина кислородом (кривой диссоциации кислорода). Для миоглобина изотерма адсорбции кислорода имеет форму гиперболы (рис. 6.7) в ткани, окружающей легочные капилляры, составляет 100 мм поэтому миоглобин в легких мог бы весьма эффективно насыщаться кислородом.

Рис. 6.6. Ориентация молекул кислорода и окиси углерода, связанных с атомом железа гема в составе миоглобина. Дистальный гистидин препятствует связыванию СО в предпочтительной для этой молекулы ориентации - под углом 90° к плоскости гемового кольца.

Рис. 6.7. Кривая насыщения миоглобина кислородом.

В венозной крови PQ равно 40 мм рт. ст., а в активно работающей мышце-около 20 мм рт. ст. Но даже при парциальном давлении 20 мм рт. ст. степень насыщения миоглобина кислородом будет весьма значительной, и поэтому миоглобин не может служить средством его доставки от легких к периферическим тканям. Однако при кислородном голодании, которым сопровождается тяжелая физическая работа, PQ в мышечной ткани может понизиться и до 5 мм рт. ст.; при столь низком давлении миоглобин легко отдает связанный кислород, обеспечивая тем самым окислительный синтез АТР в митохондриях мышечных клеток.

Мышечный гемоглобин? Что это такое? До сих пор многие слышали только о том железосодержащем белке, который находится в эритроцитах, доставляет кислород в органы и ткани, забирает углекислый газ и называется гемоглобином крови.

Миоглобин чаще связывают с дыханием морских млекопитающих, которые способны подолгу пребывать под водой и каким-то образом обеспечивать нормальную жизнедеятельность своего организма. Оказывается, такие способности имеют прямое отношение к присутствующему у этих животных в большом количестве белку – миоглобину. Есть этот белок и в человеческом организме, при необходимости (большая потребность мышц в О 2) он может связывать до 14% полученного через легочное дыхание кислорода.

Миоглобин – краткосрочное депо кислорода

Миоглобин – это содержащий двухвалентное железо белок, и, хотя его гем, в принципе, идентичен гему , белковая часть (глобин) имеет существенные отличия (полипептидная цепь). Это понятно – он немного по-другому работает: не носится по организму с током крови, а запасает кислород, образуя оксимиоглобин, и насыщает им мышечные ткани, тем самым обеспечивая тканевое (внутреннее) дыхание.

Какое количество кислорода потребует ткань – зависит от того, в каком функциональном состоянии находятся ее клетки. Когда человек пребывает в спокойном состоянии, то кислород, поступающий в организм во время внешнего дыхания, начнет интенсивно поглощаться сердечной мышцей, серым веществом головного мозга, печеночной паренхимой, корковым веществом почек. И только одна ткань способна отложить кислород про запас – мышечная, поскольку только она обладает специальной депонирующим гемопротеином, называемым миоглобином.

Еще о норме

Для определения миоглобина в организме подходят такие биологические жидкости, как сыворотка, плазма крови и моча. Эти материалы должны быть свежеполученными или хранившимися при низкой температуре (-25°С) не более 2 лет.

Нельзя производить забор анализа после еды (от приема пищи до исследования должно пройти не менее 8 часов), пациенту запрещают разного рода напитки (чай, кофе, сок), разрешают пить только чистую воду. За час до взятия биологического материала больному настоятельно рекомендуют не курить, а за полчаса – исключить всякую физическую и эмоциональную активность (данный анализ «любит» спокойное состояние). Кроме этого, не желательно сдавать кровь сразу после рентгенографического обследования, УЗ-диагностики, а тем более, после лечебных процедур типа электроимпульсной терапии.

Показатели нормы могут увеличиваться в зависимости от использования различных лабораторных методов:

  1. Иммунонефелометрического теста;
  2. Радиоиммунологического анализа (РИА);
  3. Иммунофлюоресцентного исследования.

Однако, даже не глядя на разную чувствительность тестов, количество миоглобина обычно не превышает значения от 65 до 80 мкг/л, а норма (еще раз напомним) составляет:

  • Для мужчин – 19 – 92 мкг/л (среднее – 49 ± 17 мкг/л);
  • Для женщин – 12 – 76 мкг/л (среднее – 35 ± 14 мкг/л);
  • В моче концентрация миоглобина – менее 20 мкг/л, как правило, у здорового человека любого пола он вообще не определяется.

Тест, определяющий уровень «гемоглобина мышц» назначают при подозрении на поражение кардиомиоцитов и/или клеток скелетных мышц.

Как он работает?

При значительных физических нагрузках, например, в период напряженных спортивных тренировок или участия в ответственных соревнованиях, кислород покидает мышечный гемоглобин и направляется в митохондрии клеток, чтобы принять участие в выработке универсального источника энергии – аденозинтрифосфата (АТФ), в котором в такие моменты организм нуждается особенно.

Миоглобин обладает уникальными способностями: он связывает гемоглобин обратимо, создавая своеобразный буфер, 1 его грамм может присоединить до 1,34 мл О 2 и отложить до будущих, но очень коротких, времен. Если вдруг по каким-либо причинам сердечная мышца лишается поступления кислорода, то это количество миоглобина сумеет обеспечить дыхательный процесс до 4 секунд. В такие моменты (нарушение кровообращения в миокарде или систола) в мышце сердца связанный с кислородом гемопротеин не допустит прекращения окислительно-восстановительных реакций в местах сниженного кровотока и создаст условия для обеспечения полноценного хода этих процессов. Правда, помочь миоглобин может только в течение короткого срока, поскольку является кратковременным депо.

Повреждение кардиомиоцитов (клеток миокарда) или миоцитов скелетных мышц влечет выход больших количеств «мышечного гемоглобина» в кровеносное русло.

Инфаркт миокарда является показательным примером зависимости уровня миоглобина в крови от объема очага поражения (чем больше очаг, тем выше содержание тканевого хромопротеина – миоглобина). Определение миоглобина через пару часов после появления болевых ощущений важно, поскольку здесь повышение уровня этого белка дает основание судить не только о наличии , но и степени поражения сердечной мышцы. Следующим биохимическим анализом, указывающим на инфаркт миокарда, будет определение , а, в частности – ее изоферментного спектра (МВ-фракция).

Повышенные и пониженные концентрации «гемоглобина мышц»

Физиологически повышенный уровень миоглобина в крови наблюдается при интенсивной физической нагрузке, значительном напряжении мышечного аппарата при спортивных тренировках и состязаниях и после проведения электроимпульсной терапии.

Патологическое повышение отмечается при некоторых заболеваниях:

  1. Инфаркте миокарда (увеличение содержания данного гемопротеина, как правило, предшествует возрастанию активности фермента креатинкиназы). Рост значений миоглобина носит преходящий характер, поскольку наблюдать его можно через полчаса – час вслед за наступлением болевого синдрома при ИМ (и еще в течение 2 – 3 суток после его возникновения);
  2. Выраженной почечной недостаточности с уремическим синдромом;
  3. Воспалительных процессах, протекающих непосредственно в мышцах;
  4. Травмах (сюда можно отнести и инъекции лекарственных растворов в мышцу);
  5. Глубоких термических и химических ожогах;
  6. Судорогах.

Снижается уровень миоглобина в крови только при патологических состояниях, например, таких, как:

  • РА (ревматоидный артрит);
  • Полимиозит (системное воспалительное заболевание мышечной ткани);
  • Миастения (повышение содержания «мышечного гемоглобина» связано с наличием в крови циркулирующих антител непосредственно к этому белку).

Как указывалось выше, в норме миоглобин в моче почти не встречается, хотя и существуют допустимые значения этого белка в данном биологическом материале. Его появление или превышение установленного показателя (20 мкг/л) обнаруживается в следующих случаях:

  1. Повреждения сердечной (инфаркт миокарда) или скелетных мышц;
  2. Вторичной токсической миоглобинурии;
  3. Глубоких термических или химических ожогов;
  4. Алкогольной интоксикации;
  5. Отравления отдельными видами рыбы;
  6. Значительного напряжения скелетных мышц, например, при занятиях спортом;
  7. Краш-синдрома (травматический токсикоз, развивающийся в мышечных тканях) с большим распадом мышечной массы;
  8. Поражений почек.

Следует отметить, что содержание миоглобина в последней биологической жидкости (моче) целиком зависит от функции почек, что следует учитывать при назначении и определении данного белка.

Видео: познавательная информация о миоглобине

Гемопротеины: миоглобин и гемоглобин

Гемопротеины – это сложные белки, содержащие в качестве простетической группы, окрашенный в красный цвет гем – циклический тетрапиррол или протопорфирин, состоящий из 4-х пиррольных колец, соединенных метеновыми мостиками (=СН–) с образованием плоской кольцевой сопряженной системы, т. е. ароматической. Гем в молекулах гемоглобина и миоглобина содержит 2 винильных, 4 метильных и 2 пропионатные боковые цепи. В центре плоского кольца гема находится атом железа в ферросостоянии (), который образует четыре координационнные связи с азотами пиррольных колец, ещё две координационные связи возникают в плоскости перпендикулярной плоскости гема: пятая предназначена для связывания с полипептидной цепью (через азот пиридина), а шестая – для связывания физиологического лиганда – кислорода.

Основные гемсодержащие белки

Гемопротеиды Биологические функции
Гемоглобин (), Миоглобин () Акцепторы кислорода, способные обратимо связывать его. Миоглобин резервирует кислород, гемоглобин обеспечивает транспорт кислорода. Окисление в миоглобине и гемоглобине приводит к потере их биологической активности.
Цитохромы ( / ) В цитохромах происходит попеременное окисление и восстановление атома железа, определяющее функцию цитохромов – транспорт электронов.
Хлорофиллсодержащие белки () Фотосинтез у растений.
Каталаза () Фермент, катализирующий расщепление перекиси водорода:
Витамин , цианкобаламин. Содержит – металлопорфирин. Близок по структуре гему, необходим для нормального кроветворения. Единственный витамин, содержащий в своем составе кобальт. Синтезируется исключительно микроорганизмами.
Триптофаноксигеназа (триптофанпирролаза), содержит . Катализирует начальную стадию метаболических превращений незаменимой аминокислоты трипто- фана, приводящих к синтезу никотинамида, а затем и .

Миоглобин

Характеристика структуры

· Миоглобин содержится в красных мышцах, относится к классу сложных белков, гемопротеинам, содержит белковую часть (апомиоглобин) и небелковую часть, простетическую группу – гем. Миоглобин является глобулярным белком, представлен одной полипептидной цепью, состоящей из 153 аминокислотных остатков.

· Молекула миоглобина имеет высокую степень α- спирализации: почти 75% остатков образуют 8 правых α -спиралей, которые обозначают латинскими буквами, начиная от N-конца цепи: А, В, С, Д, Е, F, G, Н.

· Пространственная 3-х мерная структура миоглобина имеет вид глобулы, образованной из α- спиралей за счет петель и изгибов цепи в области неспирализованных участков белка. В изгибах цепи находятся 4 остатка пролина.

· Внутренняя часть глобулы миоглобина защищена от воды, т. к. содержит, в основном, неполярные гидрофобные радикалы аминокислот, за исключением 2-х остатков гистидина, располагающихся в активном центре, т. е. они пространственно сближены, но принадлежат различным спиралям – (проксимальный гистидин), (дистальный гистидин).

· Гем располагается в гидрофобном «кармане» между спиралями F и Е. Четыре связи атома железа с атомами пиррольных колец, пятое координа ционное положение атома железа занято атомом азота проксимального гистидина (Гис ) в полипептидной цепи. Шестое координационное положение атома железа связано с молекулой кислорода, вблизи располагается дистальный гистидин (Гис ), который не имеет связи с гемом, но обеспечивает угловой присоединение кислорода (121˚).

· Пространственная структура белковой глобулы вокруг гема обеспечивает прочное, но обратимое связывание с кислородом и устойчивость железа к окислению ( в ).

· Биологическая функция миоглобина: он не способен транспортировать кислород, но зато эффективно его запасает в красных мышцах. В условиях кислородного голодания, например, при сильной физической нагрузке кислород высвобождается из оксигенированного миоглобина и поступает в митохондрии мышечных клеток, где осуществляется синтез АТФ (окислительное фосфорилирование).

Для миоглобина кривая адсорбции кислорода имеет форму гиперболы. Даже при низком парциальном давлении кислород в работающей мышце (20 мм рт. ст.) степень насыщения миоглобина кислородом составляет ~ 80%. Только при снижении рО 2 до 5 мм рт. ст. (при кислородном голодании и тяжелой физической нагрузке) миоглобин легко отдает связанный кислород в митохондрии.

Гемоглобин

Отличие в структурах миоглобина и гемоглобина связано с тем, что гемоглобин имеет четвертичную структуру, которая наделяет его дополнительными свойствами, отсутствующими у миоглобина. Гемоглобин обладает аллостерическими свойствами (от греческого «аллос» – другой), его функционирование регулируется компонентами внутренней среды (кислород; ; ; 2,3-ДФГ), что способствует выполнению гемоглобином его важнейших биологических функций.

Дезоксигемоглобин имеет жесткую, напряженную структуру, стабилизированную солевыми связями между субъединицами, т. е. Т-состояние (от англ. tense – напряжённый); центры связывания О 2 малодоступны, сродство к О 2 низкое.

В отличие от миоглобина, который имеет трехмерную структуру, гемоглобины, находящиеся в эритроцитах, представляют собой тетрамерные белки, молекулы которых содержат различные типы субъединиц (α, β, γ ).

НbА – основной гемоглобин взрослого человека, олигомер, содержащий 2α цепи (по 141 аминокислотному остатку в каждой цепи) и 2β цепи (по 146 остатков, составляет ~ 98% от общего количества гемоглобина. Молекула гемоглобина имеет четыре гема, т. е. 4 центра связывания О 2 .

Функции гемоглобина:

· Транспорт О 2 из легких к периферическим тканям;

· Участие в транспорте СО 2 и протонов от периферических тканей в легкие для последуюшего выведения из организма;

· Буферное действие. Гемоглобиновая буферная система наиболее мощная из буферных систем крови, препятствует закислению среды в тканевых капиллярах и подщелачиванию в легких.

Сходство и отличие структур миоглобина и гемоглобина А (НbА)

Пространственные структуры (вторичная и третичная) отдельных цепей гемоглобина и миоглобина имеют поразительное сходство, несмотря на различия в аминокислотной последовательности в полипептидных цепях.

Сходным является и расположение гема в гидрофобном «кармане» внутри белковой глобулы, его соединение с белком, а также расположение атома относительно плоскости гема.

Итак, важнейшие акцепторы О 2 в организме человека – миоглобин и гемоглобин имеют сходную конформацию, которая, по-видимому, обеспечивает им возможность обратимо связывать О 2 и устойчивость к окислению.

Связывание О 2 сопровождается разрывом солевых связей между протомерами гемоглобина, что облегчает присоединение последующих молекул О 2 , т. к. центры связывания О 2 открываются. Т-форма гемоглобина переходит в R-форму (relaxed – релаксированная), т. е. структура оксигемоглобина становится мягкой, сродство к О 2 возрастает в 300 раз.

Сродство гемоглобинов к О 2 характеризуется величиной – значением парциального давления О 2 , при котором наблюдается полунасыщение гемоглобина кислородом. Чем ниже Р50, тем выше сродство к О 2 . Благодаря уникальной структуре гемоглобин присоединяет О 2 в легких при его высоком насыщении кислородом (около 100%) и легко отдает О 2 в капиллярах тканей при более низком давлении О 2.

МИОГЛОБИН - сложный глобулярный белок, третьего уровня структурной организации, молекула которого состоит из 1 полипептидной цепи и содержит 153 аминокислоты. В миоглобине содержится железопорфириновая группа (гем), и он способен обратимо присоединять кислород.

ЧЕТВЕРТИЧНАЯ СТРУКТУРА ГЕМОГЛОБИНА . При помощи рентгеноструктурного анализа Перутцем и его сотрудниками в Кембридже установлены третичная и четвертичная структуры гемоглобина. Гемоглобин содержится в эритроцитах и служит для переноса кислорода. Молекулярная масса гемоглобина 64500. Молекула состоит из 4 отдельных полипептидных цепей: 2 a-цепей (141 остаток аминокислот) и 2 b- цепей (146 остатков аминокислот в каждой), каждая из которых связана нековалентной связью с остатками гема. Каждая из 4 отдельных цепей гемоглобина свернута нерегулярным образом и состоит из ряда a- спиральных участков, разделенных местами сгибов.

a- и b- цепи гемоглобина примерно на 70 % состоят из a-спиральных участков. По своей третичной структуре a- и b-цепи очень сходны, они образованы из a- спиральных участков одинаковой длины, согнутых под одинаковыми углами и в одних и тех же направлениях. Третичная структура a- и b-цепей гемоглобина очень сходна с третичной структурой единственной цепи миоглобина. Сходная функция гемоглобина и миоглобина, обусловленная способностью обратимо связывать О 2 , объясняется сходством третичной структуры.

Согласно данным рентгеноструктурного анализа молекула гемоглобина по своей форме приближается к сфере диаметром ~ 5,5 нм. 4 полипептидные цепи уложены относительно друг друга приблизительно в виде тетраэдра, в результате чего возникает характерная четвертичная структура гемоглобина.

Это очень компактная структура. Большинство гидрофобных R- групп аминокислот находится внутри глобулы, а большинство гидрофильных R- групп - снаружи. В молекуле гемоглобина возникает небольшое число контактов между одинаковыми цепями (2 a- и 2 b- цепями) и множество контактов между a- и b- цепями. В образовании таких контактов принимают участие в основном гидрофобные R- группы аминокислотных остатков.

При присоединении к гемоглобину кислорода расстояние между 2 b- цепями гемоглобина уменьшается и изменяется четвертичная структура. Таким образом, гемоглобин и оксигемоглобин (насыщенный кислородом) различаются по своей четвертичной структуре.

Четвертичная структура олигомерных белков также определяется первичной аминокислотной последовательностью входящих в их состав отдельных полипептидных цепей. Олигомерные белки (гемоглобин) обнаруживают способность к самосборке.

Главное отличие гемоглобина от миоглобина заключается в проявлении особого рода эффектов - кооперативных, влияющих на скорости присоединения- отсоединения молекул кислорода. Каждая молекула гемоглобина способна присоединять и переносить четыре молекулы кислорода, при этом кооперативность проявляется в том, что как присоединение, так и отсоединение каждой последующей молекулы кислорода облегчается в результате структурных изменений в конформации молекулы, которых у гемоглобина имеется две основных- оксигенированная и дезоксигенированная. Промежуточные состояния нестабильны. Предполагается следующий механизм кооперативного эффекта. Присоединение первой молекулы кислорода приводит к тому, что атом железа смещается от своего места примерно на 0,4-0,6 ангстрем, вызывая изменения конформации субъединицы. Изменившаяся конформация по аллостерическому эффекту облегчает присоединение кислорода к другой субъединице и т.д. Это позволяет максимально ускорить процесс присоединения кислорода в легких (рО 2 = 100 мм рт. ст.). При переносе оксигенированного гемоглобина в капилляры тканей (рО 2 = 5 мм рт. ст.) отсоединение молекул кислорода протекает также быстро, по кооперативному эффекту. Известны, впрочем, и химические регуляторы скорости и полноты присоединения кислорода. К ним, в частности, относится 2,3- дифосфоглицериновая кислота. Она облегчает присоединение кислорода у организмов, обитающих в высокогорных районах.

Гемоглобин - это железосодержащий дыхательный пигмент крови позвоночных и многих беспозвоночных животных, осуществляющий перенос кислорода от органов дыхания к тканям организма. В крови позвоночных и некоторых беспозвоночных гемоглобин содержится внутри в растворенном состоянии.

Молекула гемоглобина позвоночных животных состоит из белка - глобина и железосодержащей группы - гема. В состав гема входят четыре протопорфириновых кольца, каждое из которых содержит двухвалентного железа. Молекулярный вес гемоглобина - 66 000- 68 000. Физиологическая функция гемоглобина как переносчика кислорода основана на его способности обратимо связывать кислород в зависимости от концентрации последнего в крови. В присутствии кислорода гема связывает одну молекулу кислорода, при этом гемоглобин превращается в оксигемоглобин. При взаимодействии гемоглобина с окисью углерода (например, при отравлении этим газом) образуется более стабильный комплекс - карбоксигемоглобин.

Продуктами распада гемоглобина являются многочисленные железопорфириновые комплексы. При этом происходит полное отделение гема от белка (хромопротеида); это отделение протекает с превращением железа в трехвалентную форму. Получаемый железопротопорфирин называется гемином, а его соединения - геминодериватами.

Обычно большую часть гемоглобина в эритроцитах составляет гемоглобин А, или нормальный гемоглобин взрослого человека. При врожденных аномалиях и заболеваниях кроветворного аппарата в эритроцитах появляются аномальные гемоглобины. Это наблюдается, например, при серповидноклеточной анемии (см. ), (см.), врожденной метгемоглобинемии (см.).

Техника определения гемоглобина в крови - см. .

Гемоглобин выполняет в организме важную роль переносчика кислорода и принимает участие в транспорте углекислоты.

Гемоглобин представляет собой сложное химическое соединение (молекулярный вес 68 800). Он состоит из белка глобина и четырех молекул гема. Молекула гема, содержащая атом железа, обладает способностью присоединять и отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т. е. железо остается двухвалентным.

Если обработать гемоглобин раствором соляной кислоты, то от глобина отщепляется гем. Вступая в соединение с соляной кислотой, он превращается в гемин (Ca 34 H 32 N 4 O 4 FeCl), образующий кристаллы характерной формы. Проба на образование гемина производится для доказательства присутствия крови при судебно-медицинских исследованиях.

Рис. 5. Спектры поглощения оксигемоглобина (сверху) и гемоглобина.

В состав молекулы гема входят четыре пиррольных кольца (два из них имеют характер щелочи, а два - кислоты). Атом железа, содержащийся в теме, связывает гем с белковой частью глобином. Если гем теряет атом железа, а пирроловая его структура сохраняется, то получается гематопорфирин. Это вещество в больших количествах образуется в организме при некоторых отравлениях или нарушениях обмена и может выделяться с мочой.

Гем является активной, или так называемой простетической, группой гемоглобина, а глобин - белковым носителем гема. Гемоглобин, присоединивший кислород, превращается в оксигемоглобин (его обозначают символом HbO 2). Оксигемоглобин, отдавший кислород, называется восстановленным, или редуцированным, гемоглобином (Hb). Оксигемоглобин, гемоглобин и некоторые другие соединения и производные гемоглобина дают характерные полосы поглощения лучей спектра. Так, пропуская луч света через раствор оксигемоглобина, можно обнаружить две характерные темные полосы поглощения в желто-зеленой части спектра, между фрауэнгоферовыми линиями D и Е. Для восстановленного гемоглобина характерна одна широкая полоса поглощения в желто-зеленой части спектра (рис. 5).

Оксигемоглобин несколько отличается по цвету от гемоглобина, поэтому артериальная кровь, содержащая оксигемоглобин, имеет ярко-алый цвет, притом тем более яркий, чем полнее произошло ее насыщение кислородом. Венозная кровь, содержащая большое количество восстановленного гемоглобина, имеет темно-вишневый цвет.

Значительно большее поглощение световых лучей с длиной волны 620-680 ммк гемоглобином по сравнению с оксигемоглобином легло в основу методики измерения степени насыщения крови кислородом - оксигемометрии. При этой методике ушную раковину или кювету с кровью просвечивают небольшой электрической лампой и определяют с помощью фотоэлемента интенсивность светового потока указанной длины волны, проходящего через ткань уха или кювету с кровью. По показаниям фотоэлемента определяют степень насыщения гемоглобина кислородом.

Кровь взрослых людей содержит в среднем 14-15% гемоглобина (у мужчин 13,5-16%, у женщин 12,5-14,5%). Общее содержание гемоглобина равно примерно 700 г.

В эмбриональном периоде в крови человека имеются разные типы гемоглобина, отличающиеся способностью присоединять кислород и некоторыми другими химическими свойствами. Для определения и разделения разных типов гемоглобина применяют методику измерения оптической плотности растворов гемоглобина до и после денатурации его едкой щелочью. Разные типа гемоглобина условно обозначают НbА, HbF, НbР. Гемоглобин НЬР встречается только в первые 7-12 недель внутриутробного развития зародыша. На 9-й неделе появляется в крови зародыша гемоглобин HbF и гемоглобин взрослых НbА. Существенно важным представляется тот факт, что эмбриональный гемоглобин HbF обладает более высоким сродством к кислороду и может насыщаться на 60% при таком напряжении кислорода, когда гемоглобин матери насыщается всего на 30%. У разных видов позвоночных животных имеются различия в структуре гемоглобина. Гем разных типов гемоглобина при этом одинаков, глобины же различаются по своему аминокислотному составу.

В организме постоянно происходит синтез и распад гемоглобина, связанные с образованием и разрушением эритроцитов. Синтез гемоглобина совершается в эритробластах красного костного мозга. При разрушении эритроцитов, которое происходит в ретикуло-эндотелиальной системе, главным образом в печени и селезенке, из красных кровяных клеток выходит гемоглобин. В результате отщепления железа от гема и последующего окисления образуется из гемоглобина пигмент билирубин, который затем с желчью выделяется в кишечник, где превращается в стеркобилин и уробилин, которые выводятся с калом и мочой. За сутки разрушается и превращается в желчные пигменты около 8 г гемоглобина, т. е. несколько более 1 %.

В организме человека и животных могут образовываться и другие соединения гемоглобина, при спектральном анализе которых обнаруживаются характерные спектры поглощения. К числу таких соединений гемоглобина относятся метгемоглобин и карбоксигемоглобин. Вещества эти образуются в результате некоторых отравлений.

Метгемоглобин (MetHb) представляет собой прочное соединение гемоглобина с кислородом; при образовании метгемоглобина меняется валентность железа: двухвалентное железо, входящее в молекулу гемоглобина, превращается в трехвалентное. В случае накопления в крови больших количеств метгемоглобина отдача кислорода тканям становится невозможной и наступает смерть от удушения.

Метгемоглобин отличается от гемоглобина коричневым цветом и наличием полосы поглощения в красной части спектра. Метгемоглобин образуется при действии сильных окислителей: феррицианида (красной кровяной соли), марганцовокислого калия, амил- и пропилнитрита, анилина, бертолетовой соли, фенацетина.

Карбоксигемоглобин (HbСО) представляет собой соединение железа гемоглобина с окисью углерода (СО) - угарным газом. Это соединение примерно в 150-300 раз прочнее, чем соединение гемоглобина с кислородом. Поэтому примесь даже 0,1% угарного газа во вдыхаемом воздухе ведет к тому, что 80% гемоглобина оказываются связанными окисью углерода и не присоединяют кислород, что является опасным для жизни.

Слабое отравление угарным газом - обратимый процесс. При дыхании свежим воздухом СО постепенно отщепляется от карбоксигемоглобина и выделяется.

Вдыхание чистого кислорода увеличивает скорость расщепления карбоксигемоглобина в 20 раз. В тяжелых случаях отравления необходимо искусственное дыхание газовой смесью с 95% содержания O 2 и 5% CO 2 , а также переливание крови.

Миоглобин . В скелетной и сердечной мышце находится мышечный гемоглобин, называемый миоглобином. Его простетическая группа - гем - идентична этой же группе молекулы гемоглобина, а белковая часть - глобин - обладает меньшим молекулярным весом, чем белок гемоглобина.

Миоглобин человека способен связывать до 14% от общего количества кислорода в организме. Это его свойство играет важную роль в снабжении кислородом работающих мышц. Если при сокращении мышцы кровеносные капилляры ее сжимаются и кровоток в некоторых участках мышцы прекращается, то все же благодаря наличию кислорода, связанного с миоглобином, в течение некоторого времени сохраняется снабжение мышечных волокон кислородом.