Определение производной ее физический смысл. Тема урока "геометрический смысл производной"

Производная функции.

1. Определение производной, её геометрический смысл.

2.Производная сложной функции.

3. Производная обратной функции.

4. Производные высших порядков.

5. Параметрически заданные функции и неявно.

6. Дифференцирование функций, заданных параметрически и неявно.

Введение.

Источником дифференциального исчисления были два вопроса, выдвинутые запросами науки и техники в 17 веке.

1) Вопрос о вычислении скорости при произвольно заданном законе движения.

2) Вопрос о нахождении (с помощью вычислений) касательной к кривой произвольно заданной.

Задачу проведения касательной к некоторым кривым решил ещё древнегреческий учёный Архимед (287-212 г.г. до н.э.), пользуясь методом вычерчивания.

Но только в 17 и 18 веках в связи с прогрессом естествознания и техники эти вопросы получили должное развитие.

Одним из важных вопросов при изучении любого физического явления обычно является вопрос о скорости, быстроте происходящего явления.

Скорость с которой движется самолёт или автомобиль, всегда служит важнейшим показателем его работы. Быстрота прироста населения того или иного государства является одной из основных характеристик его общественного развития.

Первоначальная идея скорости ясна каждому. Однако для решения большинства практических задач этой общей идеи недостаточно. Необходимо иметь такое количественное определение этой величины, которую мы называем скоростью. Потребность в таком точном количественном определении исторически послужила одним из основных побудителей к созданию математического анализаю. Целый раздел математического анализа посвящен решению этой основной задачи и выводам из этого решения. К изучению этого раздела мы и переходим.

Определение производной, её геометрический смысл.

Пусть дана функция определённая в некотором интервале (а,в) и непрерывная в нём.

1. Дадим аргументу х приращение , тогда функция получит

приращение :

2. Составим отношение .

3. Переходя к пределу в при и, предполагая, что предел

существует, получим величину , которую называют

производной функции по аргументу х .

Определение. Производной функции в точке называется предел отношения приращения функции к приращению аргумента , когда →0.

Значение производной очевидно зависит от точки х , в которой оно найдено, поэтому производная функции есть в свою очередь некоторая функция от х . Обозначается .

По определению имеем

или (3)

Пример. Найти производную функции .

1. ;

Рассмотрим график некоторой функции y = f(x).

Отметим на нем некоторую точку А с координатами (x, f(x)) и недалеко от нее точку В с координатами (x+h, f(x+h). Проведем через эти точки прямую (АВ). Рассмотрим выражение . Разность f(x+h)-f(x) равна расстоянию BL, а расстояние АL равно h. Отношение BL/AL - это тангенс ε угла - угла наклона прямой (АВ). Теперь представим себе, что величина h очень и очень мала. Тогда прямая (АВ) почти совпадет с касательной в точке х к графику функции y = f(x).

Итак, дадим определения.

Производной функции y = f(x) в точке х называется предел отношения при h стремящемся к нулю. Пишут:

Геометрический смысл производной – тангенс угла наклона касательной.

У производной есть еще и физический смысл. В начальных классах давалось определение скорости, как расстояние, деленное на время. Однако, в реальной жизни скорость, например, автомобиля, не постоянна на протяжении всего пути. Пусть путь – это некоторая функция от времени - S(t).Зафиксируем момент времени t. За небольшой промежуток времени от t до t+h автомобиль пройдет путь S(t+h)-S(t). За маленький промежуток времени скорость сильно не изменится и поэтому, можно использовать определение скорости, известное с начальной школы . А при h, стремящемся к нулю, это и будет производная.

Производной функции f (x) в точке х0 называется предел (если он существует) отношения приращения функции в точке х0 к приращению аргумента Δх, если прирост аргумента стремится к нулю и обозначается f ‘(x0). Действие нахождения производной функции называется дифференцированием.
Производная функции имеет такой физический смысл: производная функции в заданной точке - скорость изменения функции в заданной точке.

Геометрический смысл производной . Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.

Физический смысл производной. Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

Понятие дифференциала, его свойства. Правила дифференцирования. Примеры.

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

или

Или же


Свойства дифференциала
Дифференциал обладает свойствами, аналогичными свойствам производной:





К основным правилам дифференцирования относят:
1) вынесение постоянного множителя за знак производной
2) производная суммы, производная разности
3) производная произведения функций
4) производная частного двух функций (производная дроби)

Примеры.
Докажем формулу: По определению производной имеем:

Произвольный множитель можно выносить за знак предельного перехода (это известно из свойств предела), поэтому

Например: Найти производную функции
Решение: Воспользуемся правилом вынесения множителя за знак производной:

Достаточно часто приходится сначала упрощать вид дифференцируемой функции, чтобы, воспользоваться таблицей производных и правилами нахождения производных. Следующие примеры это наглядно подтверждают.

Формулы дифференцирования. Применение дифференциала в приближенных вычислениях. Примеры.





Применение дифференциала в приближенных вычислениях позволяет использовать дифференциал для приближенных вычислений значений функции.
Примеры .
С помощью дифференциала вычислить приближенно
Для вычисления данного значения применим формулу из теории
Введем в рассмотрение функцию а заданную величину представим в виде
тогда Вычислим

Подставляя все в формулу, окончательно получим
Ответ:

16. Правило Лопиталя для раскрытия неопределенностей вида 0/0 Или ∞/∞. Примеры.
Предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

1)

17. Возрастание и убывание функции. Экстремум функции. Алгоритм исследования функции на монотонность и экстремум. Примеры .

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, большему значению аргумента соответствует большее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, большему значению аргумента соответствует меньшее значение функции, и её график идёт «сверху вниз». Наша убывает на интервалах убывает на интервалах .

Экстремумы Точку называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .
Точку называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .
Под окрестностью точки понимают интервал , где - достаточно малое положительное число.
Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Чтобы исследовать функцию на монотонность , воспользуйтесь следующей схеме:
- Найдите область определения функции;
- Найдите производную функции и область определения производной;
- Найдите нули производной, т.е. значение аргумента, при которых производная равна нулю;
- На числовом лучи отметьте общую часть области определения функции и области определения ее производной, а на ней - нули производной;
- Определите знаки производной на каждом из полученных промежутков;
- По знакам производной определите, на которых промежутках функция возрастает, а на каких спадает;
- Запишите соответствующие промежутки через точку с запятой.

Алгоритм исследования непрерывной функции y = f(x) на монотонность и экстремумы :
1) Найти производную f ′(x).
2) Найти стационарные (f ′(x) = 0) и критические (f ′(x) не существует) точки функции y = f(x).
3) Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
4) Сделать выводы о монотонности функции и ее точках экстремума.

18. Выпуклость функции. Точки перегиба. Алгоритм исследования функции на выпуклость (Вогнутость) Примеры .

выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х.

Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х.


Точка формула называется точкой перегиба графика функции y=f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки формула, в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости.

Нахождение интервалов на выпуклость:

Если функция y=f(x) имеет конечную вторую производную на интервале Х и если выполняется неравенство (), то график функции имеет выпуклость направленную вниз (вверх) на Х.
Эта теорема позволяет находитьть промежутки вогнутости и выпуклости функции, нужно лишь на области определения исходной функции решить неравенства и соответственно.

Пример : Выяснить промежутки, на которых график функцииВыяснить промежутки, на которых график функции имеет выпуклость направленную вверх и выпуклость направленную вниз. имеет выпуклость направленную вверх и выпуклость направленную вниз.
Решение: Областью определения этой функции является все множество действительных чисел.
Найдем вторую производную.


Область определения второй производной совпадает с областью определения исходной функции, поэтому, чтобы выяснить интервалы вогнутости и выпуклости, достаточно решить и соответственно. Следовательно, функция выпуклая вниз на интервале формула и выпуклая вверх на интервале формула.

19) Асимптоты функции. Примеры.

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание. Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Прямая называется наклонной асимптотой графика функции , если

ПРИМЕР:

Задание. Найти асимптоты графика функции

Решение. Область определения функции:

а) вертикальные асимптоты: прямая - вертикальная асимптота, так как

б) горизонтальные асимптоты: находим предел функции на бесконечности:

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты :

Таким образом, наклонная асимптота: .

Ответ. Вертикальная асимптота - прямая .

Наклонная асимптота - прямая .

20) Общая схема исследования функции и построение графика. Пример.

a.
Найти ОДЗ и точки разрыва функции.

b. Найти точки пересечения графика функции с осями координат.

2. Провести исследование функции с помощью первой производной, то есть найти точки экстремума функции и интервалы возрастания и убывания.

3. Исследовать функцию с помощью производной второго порядка, то есть найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.

4. Найти асимптоты графика функции: а) вертикальные, b) наклонные.

5. На основании проведенного исследования построить график функции.

Заметим, что перед построением графика полезно установить, не является ли данная функция четной или нечетной.

Вспомним, что функция называется четной, если при изменении знака аргумента значение функции не меняется: f(-x) = f(x) и функция называется нечетной, если f(-x) = -f(x) .

В этом случае достаточно исследовать функцию и построить её график при положительных значениях аргумента, принадлежащих ОДЗ. При отрицательных значениях аргумента график достраивается на том основании, что для четной функции он симметричен относительно оси Oy , а для нечетной относительно начала координат.

Примеры. Исследовать функции и построить их графики.

Область определения функции D(у)= (–∞; +∞). Точек разрыва нет.

Пересечение с осью Ox : x = 0,у= 0.

Функция нечетная, следовательно, можно исследовать ее только на промежутке }