Câte sarcini sunt la examenul de fizică? Pregătirea pentru examenul de stat unificat la fizică: exemple, soluții, explicații

Pregătirea pentru OGE și examenul de stat unificat

Învățământ secundar general

Linia UMK A.V. Fizică (10-11) (de bază, avansat)

Linia UMK A.V. Fizică (7-9)

Linia UMK A.V. Fizică (7-9)

Pregătirea pentru examenul de stat unificat la fizică: exemple, soluții, explicații

Să rezolvăm Teme de examen de stat unificat la fizică (Opțiunea C) cu un profesor.

Lebedeva Alevtina Sergeevna, profesor de fizică, 27 de ani de experiență în muncă. Certificat de Onoare de la Ministerul Educației din Regiunea Moscova (2013), Recunoștință din partea șefului Districtului Municipal Voskresensky (2015), Certificat de la Președintele Asociației Profesorilor de Matematică și Fizică din Regiunea Moscova (2015).

Lucrarea prezintă sarcini de diferite niveluri de dificultate: de bază, avansate și înalte. Misiuni nivel de bază, acestea sunt sarcini simple care testează stăpânirea celor mai importante concepte fizice, modele, fenomene și legi. Sarcinile de nivel avansat au ca scop testarea capacității de a utiliza concepte și legile fizicii pentru a analiza diferite procese și fenomene, precum și capacitatea de a rezolva probleme folosind una sau două legi (formule) pe orice subiect curs şcolar fizică. În muncă, 4 sarcini din partea 2 sunt sarcini nivel înalt complexitatea și testarea capacității de a utiliza legile și teoriile fizicii într-o situație schimbată sau nouă. Finalizarea unor astfel de sarcini necesită aplicarea cunoștințelor din două sau trei secțiuni de fizică simultan, adică. nivel înalt de pregătire. Această opțiune pe deplin conformă versiune demo Unified State Examination 2017, sarcini preluate din banca de activități deschisă Unified State Examination.

Figura prezintă un grafic al modulului de viteză în funcție de timp t. Determinați din grafic distanța parcursă de mașină în intervalul de timp de la 0 la 30 s.


Soluţie. Calea parcursă de o mașină în intervalul de timp de la 0 la 30 s poate fi definită cel mai ușor ca aria unui trapez, ale cărui baze sunt intervalele de timp (30 – 0) = 30 s și (30 – 10). ) = 20 s, iar înălțimea este viteza v= 10 m/s, adică

S = (30 + 20) Cu 10 m/s = 250 m.
2

Răspuns. 250 m.

O sarcină de 100 kg este ridicată vertical în sus cu ajutorul unui cablu. Figura arată dependența proiecției vitezei V sarcina pe axa îndreptată în sus, în funcție de timp t. Determinați modulul forței de tensionare a cablului în timpul ridicării.



Soluţie. Conform graficului de dependență a proiecției vitezei v sarcină pe o axă îndreptată vertical în sus, în funcție de timp t, putem determina proiecția accelerației sarcinii

o = v = (8 – 2) m/s = 2 m/s 2.
t 3 s

Sarcina este acționată de: forța gravitațională îndreptată vertical în jos și forța de tensiune a cablului îndreptată vertical în sus de-a lungul cablului (vezi Fig. 2. Să notăm ecuația de bază a dinamicii. Să folosim a doua lege a lui Newton. Suma geometrică a forțelor care acționează asupra unui corp este egală cu produsul dintre masa corpului și accelerația care îi este conferită.

+ = (1)

Să scriem ecuația pentru proiecția vectorilor în sistemul de referință asociat cu pământul, îndreptând axa OY în sus. Proiecția forței de tensiune este pozitivă, deoarece direcția forței coincide cu direcția axei OY, proiecția forței gravitaționale este negativă, deoarece vectorul forță este opus axei OY, proiecția vectorului accelerație este de asemenea pozitiv, astfel încât corpul se mișcă cu accelerație ascendentă. Avem

Tmg = ma (2);

din formula (2) modulul forței de tracțiune

T = m(g + o) = 100 kg (10 + 2) m/s 2 = 1200 N.

Răspuns. 1200 N.

Corpul este târât de-a lungul unei suprafețe orizontale aspre cu o viteză constantă al cărei modul este de 1,5 m/s, aplicându-i o forță așa cum se arată în figura (1). În acest caz, modulul forței de frecare de alunecare care acționează asupra corpului este de 16 N. Care este puterea dezvoltată de forță? F?



Soluţie. Să ne imaginăm procesul fizic specificat în enunțul problemei și să facem un desen schematic indicând toate forțele care acționează asupra corpului (Fig. 2). Să scriem ecuația de bază a dinamicii.

Tr + + = (1)

După ce am ales un sistem de referință asociat cu o suprafață fixă, scriem ecuațiile pentru proiecția vectorilor pe axele de coordonate selectate. Conform condițiilor problemei, corpul se mișcă uniform, deoarece viteza sa este constantă și egală cu 1,5 m/s. Aceasta înseamnă că accelerația corpului este zero. Două forţe acţionează orizontal asupra corpului: forţa de frecare de alunecare tr. și forța cu care este târât corpul. Proiecția forței de frecare este negativă, deoarece vectorul forță nu coincide cu direcția axei X. Proiecția forței F pozitiv. Vă reamintim că pentru a găsi proiecția, coborâm perpendiculara de la începutul și sfârșitul vectorului la axa selectată. Ținând cont de asta avem: F cosα – F tr = 0; (1) să exprimăm proiecția forței F, Aceasta F cosα = F tr = 16 N; (2) atunci puterea dezvoltată de forță va fi egală cu N = F cosα V(3) Să facem o înlocuire, ținând cont de ecuația (2) și să înlocuim datele corespunzătoare în ecuația (3):

N= 16 N · 1,5 m/s = 24 W.

Răspuns. 24 W.

O sarcină atașată la un arc ușor cu o rigiditate de 200 N/m suferă oscilații verticale. Figura prezintă un grafic al dependenței de deplasare xîncărcă din când în când t. Determinați care este masa încărcăturii. Rotunjiți răspunsul la un număr întreg.


Soluţie. O masă de pe un arc suferă oscilații verticale. Conform graficului deplasării sarcinii X din când în când t, determinăm perioada de oscilație a sarcinii. Perioada de oscilație este egală cu T= 4 s; din formula T= 2π să exprimăm masa m marfă


= T ; m = T 2 ; m = k T 2 ; m= 200 N/m (4 s) 2 = 81,14 kg ≈ 81 kg.
k 4π 2 4π 2 39,438

Răspuns: 81 kg.

În figură se prezintă un sistem de două blocuri de lumină și un cablu fără greutate, cu ajutorul căruia poți să ții în echilibru sau să ridici o sarcină cu o greutate de 10 kg. Frecarea este neglijabilă. Pe baza analizei figurii de mai sus, selectați douăafirmatii adevarateși indicați numărul lor în răspunsul dvs.


  1. Pentru a menține sarcina în echilibru, trebuie să acționați asupra capătului frânghiei cu o forță de 100 N.
  2. Sistemul de blocuri prezentat în figură nu oferă niciun câștig în putere.
  3. h, trebuie să scoateți o secțiune din lungimea frânghiei 3 h.
  4. Pentru a ridica încet o încărcătură la o înălțime hh.

Soluţie.În această problemă trebuie să vă amintiți mecanisme simple, și anume blocuri: bloc mobil și fix. Blocul mobil oferă un câștig dublu în rezistență, în timp ce secțiunea de frânghie trebuie trasă de două ori mai mult, iar blocul fix este folosit pentru a redirecționa forța. În muncă, mecanismele simple de câștig nu dau. După analizarea problemei, selectăm imediat afirmațiile necesare:

  1. Pentru a ridica încet o încărcătură la o înălțime h, trebuie să scoateți o secțiune din lungimea frânghiei 2 h.
  2. Pentru a menține sarcina în echilibru, trebuie să acționați asupra capătului frânghiei cu o forță de 50 N.

Răspuns. 45.

O greutate de aluminiu atașată de un fir imponderabil și inextensibil este complet scufundată într-un vas cu apă. Sarcina nu atinge pereții și fundul vasului. Apoi, o greutate de fier, a cărei masă este egală cu masa greutății de aluminiu, este scufundată în același vas cu apă. Cum se vor schimba modulul forței de întindere a firului și modulul forței gravitaționale care acționează asupra sarcinii ca urmare a acestui fapt?

  1. Creșteri;
  2. Scăderi;
  3. Nu se schimba.


Soluţie. Analizăm starea problemei și evidențiem acei parametri care nu se modifică în timpul studiului: aceștia sunt masa corpului și lichidul în care corpul este scufundat pe un fir. După aceasta, este mai bine să faci desen schematic si indicati fortele care actioneaza asupra sarcinii: tensiunea firului F control, îndreptat în sus de-a lungul firului; gravitația îndreptată vertical în jos; forța arhimediană o, acționând din partea lichidului asupra corpului scufundat și îndreptat în sus. În funcție de condițiile problemei, masa sarcinilor este aceeași, prin urmare, modulul forței gravitaționale care acționează asupra sarcinii nu se modifică. Deoarece densitatea încărcăturii este diferită, volumul va fi și el diferit.

V = m .
p

Densitatea fierului este de 7800 kg/m3, iar densitatea încărcăturii din aluminiu este de 2700 kg/m3. Prin urmare, Vşi< V a. Corpul este în echilibru, rezultanta tuturor forțelor care acționează asupra corpului este zero. Să direcționăm axa de coordonate OY în sus. Scriem ecuația de bază a dinamicii, ținând cont de proiecția forțelor, sub formă F control + F amg= 0; (1) Să exprimăm forța de tensiune F control = mgF a(2); Forța arhimediană depinde de densitatea lichidului și de volumul părții imersate a corpului F a = ρ gV p.h.t. (3); Densitatea lichidului nu se modifică, iar volumul corpului de fier este mai mic Vşi< V a, prin urmare forța arhimediană care acționează asupra sarcinii de fier va fi mai mică. Concluzionăm despre modulul forței de întindere a firului, lucrând cu ecuația (2), acesta va crește.

Răspuns. 13.

Un bloc de masă m alunecă de pe un plan fix înclinat brut cu un unghi α la bază. Modulul de accelerație al blocului este egal cu o, modulul vitezei blocului crește. Rezistența aerului poate fi neglijată.

Stabiliți o corespondență între mărimile fizice și formulele cu care acestea pot fi calculate. Pentru fiecare poziție din prima coloană, selectați poziția corespunzătoare din a doua coloană și notați numerele selectate în tabel sub literele corespunzătoare.

B) Coeficientul de frecare între un bloc și un plan înclinat

3) mg cosα

4) sinα – o
g cosα

Soluţie. Această sarcină necesită aplicarea legilor lui Newton. Vă recomandăm să faceți un desen schematic; indică toate caracteristicile cinematice ale mișcării. Dacă este posibil, descrieți vectorul de accelerație și vectorii tuturor forțelor aplicate corpului în mișcare; amintiți-vă că forțele care acționează asupra unui corp sunt rezultatul interacțiunii cu alte corpuri. Apoi scrieți ecuația de bază a dinamicii. Selectați un sistem de referință și scrieți ecuația rezultată pentru proiecția vectorilor de forță și accelerație;

Urmând algoritmul propus vom realiza un desen schematic (Fig. 1). Figura prezintă forțele aplicate centrului de greutate al blocului și axelor de coordonate ale sistemului de referință asociate cu suprafața planului înclinat. Deoarece toate forțele sunt constante, mișcarea blocului va fi uniform variabilă odată cu creșterea vitezei, adică. vectorul accelerație este îndreptat în direcția mișcării. Să alegem direcția axelor așa cum se arată în figură. Să notăm proiecțiile forțelor pe axele selectate.


Să scriem ecuația de bază a dinamicii:

Tr + = (1)

Să scriem această ecuație (1) pentru proiecția forțelor și a accelerației.

Pe axa OY: proiecția forței de reacție a solului este pozitivă, deoarece vectorul coincide cu direcția axei OY Ny = N; proiecția forței de frecare este zero deoarece vectorul este perpendicular pe axă; proiecția gravitației va fi negativă și egală mg y= mg cosα; proiecție vectorială de accelerație un y= 0, deoarece vectorul accelerație este perpendicular pe axă. Avem Nmg cosα = 0 (2) din ecuație exprimăm forța de reacție care acționează asupra blocului din partea planului înclinat. N = mg cosα (3). Să notăm proiecțiile pe axa OX.

Pe axa OX: proiecția forței N este egal cu zero, deoarece vectorul este perpendicular pe axa OX; Proiecția forței de frecare este negativă (vectorul este îndreptat în direcția opusă față de axa selectată); proiecția gravitației este pozitivă și egală cu mg x = mg sinα (4) din triunghi dreptunghic. Proiecția accelerației este pozitivă un x = o; Apoi scriem ecuația (1) ținând cont de proiecție mg sinα – F tr = ma (5); F tr = m(g sinα – o) (6); Amintiți-vă că forța de frecare este proporțională cu forța presiunii normale N.

Prin definiție F tr = μ N(7), exprimăm coeficientul de frecare al blocului pe planul înclinat.

μ = F tr = m(g sinα – o) = tgα – o (8).
N mg cosα g cosα

Selectăm pozițiile potrivite pentru fiecare literă.

Răspuns. A – 3; B – 2.

Sarcina 8. Oxigenul gazos este într-un vas cu un volum de 33,2 litri. Presiunea gazului este de 150 kPa, temperatura acestuia este de 127° C. Determinați masa gazului din acest vas. Exprimați răspunsul în grame și rotunjiți la cel mai apropiat număr întreg.

Soluţie. Este important să acordați atenție conversiei unităților în sistemul SI. Convertiți temperatura în Kelvin T = t°C + 273, volum V= 33,2 l = 33,2 · 10 –3 m 3 ; Transformăm presiunea P= 150 kPa = 150.000 Pa. Folosind ecuația de stare a gazelor ideale

Să exprimăm masa gazului.

Asigurați-vă că acordați atenție la ce unități li se cere să noteze răspunsul. Acest lucru este foarte important.

Răspuns.'48

Sarcina 9. Un gaz monoatomic ideal în cantitate de 0,025 mol s-a expandat adiabatic. În același timp, temperatura sa a scăzut de la +103°C la +23°C. Câtă muncă a fost făcută de gaz? Exprimați răspunsul în Jouli și rotunjiți la cel mai apropiat număr întreg.

Soluţie.În primul rând, gazul este numărul monoatomic de grade de libertate i= 3, în al doilea rând, gazul se extinde adiabatic - aceasta înseamnă fără schimb de căldură Q= 0. Gazul funcționează prin scăderea energiei interne. Ținând cont de acest lucru, scriem prima lege a termodinamicii sub forma 0 = ∆ U + O G; (1) să exprimăm lucrul cu gaz O g = –∆ U(2); Scriem modificarea energiei interne pentru un gaz monoatomic ca

Răspuns. 25 J.

Umiditatea relativă a unei porțiuni de aer la o anumită temperatură este de 10%. De câte ori trebuie schimbată presiunea acestei porțiuni de aer astfel încât, la o temperatură constantă, umiditatea relativă a acesteia să crească cu 25%?

Soluţie.Întrebările legate de aburul saturat și umiditatea aerului provoacă cel mai adesea dificultăți pentru școlari. Să folosim formula pentru a calcula umiditatea relativă a aerului

În funcție de condițiile problemei, temperatura nu se modifică, ceea ce înseamnă presiunea abur saturat rămâne la fel. Să notăm formula (1) pentru două stări ale aerului.

φ 1 = 10%; φ 2 = 35%

Să exprimăm presiunea aerului din formulele (2), (3) și să găsim raportul de presiune.

P 2 = φ 2 = 35 = 3,5
P 1 φ 1 10

Răspuns. Presiunea trebuie crescută de 3,5 ori.

Substanța fierbinte în stare lichidă s-a răcit lent cuptor de topire cu putere constantă. Tabelul prezintă rezultatele măsurătorilor temperaturii unei substanțe în timp.

Selectați din lista oferită două enunţuri care corespund rezultatelor măsurătorilor efectuate şi indică numărul acestora.

  1. Punctul de topire al substanței în aceste condiții este de 232°C.
  2. După 20 min. după începerea măsurătorilor, substanța era doar în stare solidă.
  3. Capacitatea termică a unei substanțe în stare lichidă și solidă este aceeași.
  4. După 30 min. după începerea măsurătorilor, substanța era doar în stare solidă.
  5. Procesul de cristalizare a substanței a durat mai mult de 25 de minute.

Soluţie. Din moment ce substanța s-a răcit, ea energie internă a scăzut. Rezultatele măsurătorilor de temperatură ne permit să determinăm temperatura la care o substanță începe să se cristalizeze. În timp ce o substanță se schimbă de la lichid la solid, temperatura nu se schimbă. Știind că temperatura de topire și temperatura de cristalizare sunt aceleași, alegem afirmația:

1. Punctul de topire al substanței în aceste condiții este de 232°C.

A doua afirmație corectă este:

4. După 30 min. după începerea măsurătorilor, substanța era doar în stare solidă. Deoarece temperatura în acest moment este deja sub temperatura de cristalizare.

Răspuns. 14.

Într-un sistem izolat, corpul A are o temperatură de +40°C, iar corpul B are o temperatură de +65°C. Aceste corpuri au fost aduse în contact termic unele cu altele. După ceva timp, a avut loc echilibrul termic. Cum s-a modificat temperatura corpului B și energia internă totală a corpurilor A și B ca rezultat?

Pentru fiecare cantitate, determinați natura corespunzătoare a modificării:

  1. Creștet;
  2. Scăzut;
  3. Nu s-a schimbat.

Notați numerele selectate pentru fiecare mărime fizică din tabel. Numerele din răspuns pot fi repetate.

Soluţie. Dacă într-un sistem izolat de corpuri nu au loc alte transformări de energie decât schimbul de căldură, atunci cantitatea de căldură degajată de corpurile a căror energie internă scade este egală cu cantitatea de căldură primită de corpurile a căror energie internă crește. (Conform legii conservării energiei.) În acest caz, energia internă totală a sistemului nu se modifică. Problemele de acest tip sunt rezolvate pe baza ecuației de echilibru termic.

U = ∑ n U i = 0 (1);
i = 1

unde ∆ U– modificarea energiei interne.

În cazul nostru, ca urmare a schimbului de căldură, energia internă a corpului B scade, ceea ce înseamnă că temperatura acestui corp scade. Energia internă a corpului A crește, deoarece corpul a primit o cantitate de căldură de la corpul B, temperatura acestuia va crește. Energia internă totală a corpurilor A și B nu se modifică.

Răspuns. 23.

Proton p, care zboară în golul dintre polii unui electromagnet, are o viteză perpendiculară pe vectorul de inducție câmp magnetic așa cum se arată în imagine. Unde este forța Lorentz care acționează asupra protonului îndreptată față de desen (sus, către observator, departe de observator, în jos, stânga, dreapta)


Soluţie. Un câmp magnetic acţionează asupra unei particule încărcate cu forţa Lorentz. Pentru a determina direcția acestei forțe, este important să ne amintim regula mnemonică a mâinii stângi și să nu uitați să țineți cont de încărcătura particulei. Îndreptăm cele patru degete ale mâinii stângi de-a lungul vectorului viteză, pentru o particulă încărcată pozitiv, vectorul ar trebui să intre perpendicular în palmă, degetul mare setat la 90° arată direcția forței Lorentz care acționează asupra particulei. Ca rezultat, avem că vectorul forță Lorentz este îndreptat departe de observator în raport cu figură.

Răspuns. de la observator.

Modulul intensității câmpului electric într-un condensator de aer plat cu o capacitate de 50 μF este egal cu 200 V/m. Distanța dintre plăcile condensatorului este de 2 mm. Care este sarcina condensatorului? Scrieți răspunsul în µC.

Soluţie. Să convertim toate unitățile de măsură în sistemul SI. Capacitate C = 50 µF = 50 10 –6 F, distanța dintre plăci d= 2 · 10 –3 m Problema se referă la un condensator de aer plat - un dispozitiv pentru stocarea sarcinii electrice și a energiei câmpului electric. Din formula capacității electrice

Unde d– distanta dintre placi.

Să exprimăm tensiunea U=E d(4); Să înlocuim (4) în (2) și să calculăm sarcina condensatorului.

q = C · Ed= 50 10 –6 200 0,002 = 20 µC

Vă rugăm să fiți atenți la unitățile în care trebuie să scrieți răspunsul. L-am primit în coulombi, dar îl prezentăm în µC.

Răspuns. 20 uC.


Elevul a efectuat un experiment cu privire la refracția luminii, prezentat în fotografie. Cum se modifică unghiul de refracție al luminii care se propagă în sticlă și indicele de refracție al sticlei odată cu creșterea unghiului de incidență?

  1. Creșteri
  2. Scăderi
  3. Nu se schimba
  4. Înregistrați numerele selectate pentru fiecare răspuns în tabel. Numerele din răspuns pot fi repetate.

Soluţie.În probleme de acest gen, ne amintim ce este refracția. Aceasta este o schimbare a direcției de propagare a undei atunci când trece de la un mediu la altul. Este cauzată de faptul că vitezele de propagare a undelor în aceste medii sunt diferite. După ce ne-am dat seama în ce mediu se propagă lumina către care, să scriem legea refracției sub forma

sinα = n 2 ,
sinβ n 1

Unde n 2 – indicele absolut de refracție al sticlei, mediul în care trece lumina; n 1 este indicele absolut de refracție al primului mediu din care provine lumina. Pentru aer n 1 = 1. α este unghiul de incidență al fasciculului pe suprafața semicilindrului de sticlă, β este unghiul de refracție al fasciculului în sticlă. Mai mult, unghiul de refracție va fi mai mic decât unghiul de incidență, deoarece sticla este un mediu optic mai dens - un mediu cu un indice de refracție ridicat. Viteza de propagare a luminii în sticlă este mai mică. Vă rugăm să rețineți că măsurăm unghiuri de la perpendiculara restaurată la punctul de incidență al fasciculului. Dacă creșteți unghiul de incidență, atunci unghiul de refracție va crește. Acest lucru nu va schimba indicele de refracție al sticlei.

Răspuns.

Jumper de cupru la un moment dat t 0 = 0 începe să se miște cu o viteză de 2 m/s de-a lungul șinelor conductoare orizontale paralele, la capetele cărora este conectat un rezistor de 10 ohmi. Întregul sistem este într-un câmp magnetic vertical uniform. Rezistența jumperului și a șinelor este neglijabilă; Fluxul Ф al vectorului de inducție magnetică prin circuitul format din jumper, șine și rezistor se modifică în timp t așa cum se arată în grafic.


Folosind graficul, selectați două afirmații corecte și indicați numărul lor în răspunsul dvs.

  1. Până când t= 0,1 s modificarea fluxului magnetic prin circuit este de 1 mWb.
  2. Curentul de inducție în jumper în intervalul de la t= 0,1 s t= 0,3 s max.
  3. Modulul FEM inductiv care apare în circuit este de 10 mV.
  4. Puterea curentului de inducție care curge în jumper este de 64 mA.
  5. Pentru a menține mișcarea jumperului, i se aplică o forță, a cărei proiecție pe direcția șinelor este de 0,2 N.

Soluţie. Folosind un grafic al dependenței în timp a fluxului vectorului de inducție magnetică prin circuit, vom determina zonele în care se modifică fluxul F și unde modificarea fluxului este zero. Acest lucru ne va permite să determinăm intervalele de timp în care un curent indus va apărea în circuit. Afirmație adevărată:

1) Până la momentul respectiv t= 0,1 s modificarea fluxului magnetic prin circuit este egală cu 1 mWb ∆Ф = (1 – 0) 10 –3 Wb; Modulul FEM inductiv care apare în circuit este determinat folosind legea EMR

Răspuns. 13.


Folosind graficul curentului în funcție de timp într-un circuit electric a cărui inductanță este de 1 mH, determinați modulul EMF autoindusăîn intervalul de timp de la 5 la 10 s. Scrieți răspunsul în µV.

Soluţie. Să convertim toate cantitățile în sistemul SI, de exemplu. convertim inductanța de 1 mH în H, obținem 10 –3 H. De asemenea, vom converti curentul prezentat în figură în mA în A prin înmulțirea cu 10 –3.

Formula pentru FEM de auto-inducție are forma

in acest caz, intervalul de timp este dat in functie de conditiile problemei

t= 10 s – 5 s = 5 s

secunde și folosind graficul determinăm intervalul de schimbare a curentului în acest timp:

eu= 30 10 –3 – 20 10 –3 = 10 10 –3 = 10 –2 A.

Să înlocuim valori numericeîn formula (2), obținem

| Ɛ | = 2 ·10 –6 V, sau 2 µV.

Răspuns. 2.

Două plăci transparente plan-paralele sunt presate strâns una pe cealaltă. O rază de lumină cade din aer pe suprafața primei plăci (vezi figura). Se știe că indicele de refracție al plăcii superioare este egal cu n 2 = 1,77. Stabiliți o corespondență între mărimile fizice și semnificațiile acestora. Pentru fiecare poziție din prima coloană, selectați poziția corespunzătoare din a doua coloană și notați numerele selectate în tabel sub literele corespunzătoare.


Soluţie. Pentru rezolvarea problemelor privind refracția luminii la interfața dintre două medii, în special problemele privind trecerea luminii prin plăci plan-paralele, se poate recomanda următoarea procedură de rezolvare: realizarea unui desen care să indice traseul razelor care vin de la un mediu la altul; În punctul de incidență al fasciculului la interfața dintre cele două medii, trageți o normală la suprafață, marcați unghiurile de incidență și de refracție. Acordați o atenție deosebită densității optice a suportului luat în considerare și amintiți-vă că atunci când un fascicul de lumină trece de la un mediu optic mai puțin dens la un mediu optic mai dens, unghiul de refracție va fi mai mic decât unghiul de incidență. Figura arată unghiul dintre raza incidentă și suprafață, dar avem nevoie de unghiul de incidență. Amintiți-vă că unghiurile sunt determinate de perpendiculara restaurată în punctul de impact. Determinăm că unghiul de incidență al fasciculului pe suprafață este de 90° – 40° = 50°, indicele de refracție n 2 = 1,77; n 1 = 1 (aer).

Să scriem legea refracției

sinβ = păcat50 = 0,4327 ≈ 0,433
1,77

Să trasăm calea aproximativă a fasciculului prin plăci. Folosim formula (1) pentru limitele 2–3 și 3–1. Ca răspuns primim

A) Sinusul unghiului de incidență al fasciculului pe limita 2–3 dintre plăci este 2) ≈ 0,433;

B) Unghiul de refracție al fasciculului la trecerea graniței 3–1 (în radiani) este 4) ≈ 0,873.

Răspuns. 24.

Determinați câte particule α și câți protoni sunt produși ca rezultat al reacției de fuziune termonucleară

+ → x+ y;

Soluţie. In fata tuturor reactii nucleare sunt respectate legile de conservare a sarcinii electrice si a numarului de nucleoni. Să notăm cu x numărul de particule alfa, y numărul de protoni. Să inventăm ecuații

+ → x + y;

rezolvand sistemul avem asta x = 1; y = 2

Răspuns. 1 – α-particulă; 2 – protoni.

Modulul de impuls al primului foton este de 1,32 · 10 –28 kg m/s, ceea ce este cu 9,48 · 10 –28 kg m/s mai mic decât modulul de impuls al celui de-al doilea foton. Aflați raportul de energie E 2 /E 1 al celui de-al doilea și al primului foton. Rotunjiți răspunsul la cea mai apropiată zecime.

Soluţie. Momentul celui de-al doilea foton este mai mare decât impulsul primului foton conform condiției, ceea ce înseamnă că poate fi reprezentat p 2 = p 1 + Δ p(1). Energia unui foton poate fi exprimată în termeni de impuls al fotonului folosind următoarele ecuații. Acest E = mc 2 (1) și p = mc(2), atunci

E = pc (3),

Unde E- energie fotonica, p– impulsul fotonului, m – masa fotonului, c= 3 · 10 8 m/s – viteza luminii. Ținând cont de formula (3) avem:

E 2 = p 2 = 8,18;
E 1 p 1

Rotunjim răspunsul la zecimi și obținem 8.2.

Răspuns. 8,2.

Nucleul atomului a suferit dezintegrare radioactivă a pozitronilor β. Cum s-a schimbat sarcina electrică a nucleului și numărul de neutroni din acesta ca urmare a acestui fapt?

Pentru fiecare cantitate, determinați natura corespunzătoare a modificării:

  1. Creștet;
  2. Scăzut;
  3. Nu s-a schimbat.

Notați numerele selectate pentru fiecare mărime fizică din tabel. Numerele din răspuns pot fi repetate.

Soluţie. Pozitronul β - dezintegrarea nucleului atomic are loc atunci când un proton se transformă într-un neutron cu emisia unui pozitron. Ca urmare, numărul de neutroni din nucleu crește cu unul, sarcina electrică scade cu unul, iar numărul de masă al nucleului rămâne neschimbat. Astfel, reacția de transformare a elementului este următoarea:

Răspuns. 21.

Au fost efectuate cinci experimente în laborator pentru a observa difracția folosind diferite rețele de difracție. Fiecare dintre rețele a fost iluminat de fascicule paralele de lumină monocromatică cu o anumită lungime de undă. În toate cazurile, lumina a căzut perpendicular pe grătar. În două dintre aceste experimente, s-a observat același număr de maxime principale de difracție. Indicați mai întâi numărul experimentului în care a fost folosit un rețele de difracție cu o perioadă mai scurtă și apoi numărul experimentului în care s-a folosit un rețele de difracție cu o perioadă mai mare.

Soluţie. Difracția luminii este fenomenul unui fascicul de lumină într-o regiune de umbră geometrică. Difracția poate fi observată atunci când pe calea unei unde luminoase există zone opace sau găuri în obstacole mari care sunt opace la lumină, iar dimensiunile acestor zone sau găuri sunt proporționale cu lungimea de undă. Unul dintre cele mai importante dispozitive de difracție este rețeaua de difracție. Direcțiile unghiulare către maximele modelului de difracție sunt determinate de ecuație

d sinφ = kλ (1),

Unde d– perioada rețelei de difracție, φ – unghiul dintre normala rețelei și direcția către unul dintre maximele diagramei de difracție, λ – lungimea de undă a luminii, k– un număr întreg numit ordinea maximului de difracție. Să exprimăm din ecuația (1)

Selectând perechile în funcție de condițiile experimentale, selectăm mai întâi 4 unde a fost folosit un rețele de difracție cu o perioadă mai scurtă, iar apoi numărul experimentului în care a fost utilizat un rețeau de difracție cu o perioadă mai mare - acesta este 2.

Răspuns. 42.

Curentul trece printr-un rezistor bobinat. Rezistorul a fost înlocuit cu altul, cu un fir din același metal și aceeași lungime, dar având jumătate din aria secțiunii transversale, iar jumătate din curent a fost trecut prin el. Cum se va schimba tensiunea pe rezistor și rezistența acestuia?

Pentru fiecare cantitate, determinați natura corespunzătoare a modificării:

  1. Va crește;
  2. Va scădea;
  3. Nu se va schimba.

Notați numerele selectate pentru fiecare mărime fizică din tabel. Numerele din răspuns pot fi repetate.

Soluţie. Este important să ne amintim de ce valori depinde rezistența conductorului. Formula de calcul a rezistenței este

Legea lui Ohm pentru o secțiune a circuitului, din formula (2), exprimăm tensiunea

U = eu R (3).

În funcție de condițiile problemei, al doilea rezistor este realizat din sârmă din același material, aceeași lungime, dar cu secțiune transversală diferită. Zona este de două ori mai mică. Înlocuind în (1) constatăm că rezistența crește de 2 ori, iar curentul scade de 2 ori, prin urmare, tensiunea nu se modifică.

Răspuns. 13.

Perioada de oscilație pendul matematic pe suprafața Pământului este de 1,2 ori mai lungă decât perioada oscilațiilor sale pe o anumită planetă. Ce este modulul de accelerare? cădere liberă pe planeta asta? Influența atmosferei în ambele cazuri este neglijabilă.

Soluţie. Un pendul matematic este un sistem format dintr-un fir ale cărui dimensiuni sunt multe mai multe dimensiuni mingea și mingea în sine. Poate apărea dificultăți dacă se uită formula lui Thomson pentru perioada de oscilație a unui pendul matematic.

T= 2π (1);

l– lungimea pendulului matematic; g– accelerare în cădere liberă.

După condiție

Să ne exprimăm din (3) g n = 14,4 m/s 2. Trebuie remarcat faptul că accelerația gravitației depinde de masa planetei și de rază

Răspuns. 14,4 m/s 2.

Un conductor drept de 1 m lungime care transportă un curent de 3 A este situat într-un câmp magnetic uniform cu inducție ÎN= 0,4 Tesla la un unghi de 30° față de vector. Care este magnitudinea forței care acționează asupra conductorului din câmpul magnetic?

Soluţie. Dacă plasați un conductor purtător de curent într-un câmp magnetic, câmpul de pe conductorul purtător de curent va acționa cu o forță Amperi. Să scriem formula pentru modulul forței Ampere

F A = eu LB sinα ;

F A = 0,6 N

Răspuns. F A = 0,6 N.

Energia câmpului magnetic stocată într-o bobină atunci când trece prin aceasta DC, este egal cu 120 J. De câte ori trebuie crescut curentul care circulă prin înfășurarea bobinei pentru ca energia câmpului magnetic stocată în ea să crească cu 5760 J.

Soluţie. Energia câmpului magnetic al bobinei se calculează prin formula

W m = LI 2 (1);
2

După condiție W 1 = 120 J, atunci W 2 = 120 + 5760 = 5880 J.

eu 1 2 = 2W 1 ; eu 2 2 = 2W 2 ;
L L

Apoi raportul actual

eu 2 2 = 49; eu 2 = 7
eu 1 2 eu 1

Răspuns. Puterea curentului trebuie crescută de 7 ori. Introduceți doar numărul 7 pe formularul de răspuns.

Un circuit electric este format din două becuri, două diode și o spire de fir conectată așa cum se arată în figură. (O diodă permite curentului să curgă doar într-o singură direcție, așa cum se arată în partea de sus a imaginii.) Care dintre becuri se va aprinde dacă polul nord al magnetului este apropiat de bobină? Explicați răspunsul indicând ce fenomene și tipare ați folosit în explicație.


Soluţie. Liniile de inducție magnetică ies din polul nord magnet și diverge. Pe măsură ce magnetul se apropie, fluxul magnetic prin bobina de sârmă crește. În conformitate cu regula lui Lenz, câmpul magnetic creat de curentul inductiv al bobinei trebuie direcționat spre dreapta. Conform regulii gimletului, curentul ar trebui să curgă în sensul acelor de ceasornic (cum este văzut din stânga). Dioda din circuitul celui de-al doilea lămpi trece în această direcție. Aceasta înseamnă că a doua lampă se va aprinde.

Răspuns. A doua lampă se va aprinde.

Lungimea spițelor din aluminiu L= 25 cm și aria secțiunii transversale S= 0,1 cm 2 suspendat pe un fir de capătul superior. Capătul inferior se sprijină pe fundul orizontal al vasului în care se toarnă apă. Lungimea părții scufundate a spiței l= 10 cm Aflați forța F, cu care acul de tricotat apasă pe fundul vasului, dacă se știe că firul este amplasat vertical. Densitatea aluminiului ρ a = 2,7 g/cm 3, densitatea apei ρ b = 1,0 g/cm 3. Accelerația gravitației g= 10 m/s 2

Soluţie. Să facem un desen explicativ.


– Forța de întindere a firului;

– Forța de reacție a fundului vasului;

a este forța arhimediană care acționează numai asupra părții imersate a corpului și aplicată în centrul părții scufundate a spiței;

– forța gravitațională care acționează asupra spiței de pe Pământ și se aplică pe centrul întregii spițe.

Prin definiție, masa spiței m iar modulul de forță arhimedian se exprimă după cum urmează: m = SLρ a (1);

F a = Slρ în g (2)

Să luăm în considerare momentele forțelor raportate la punctul de suspendare al spiței.

M(T) = 0 – momentul forței de întindere; (3)

M(N)= NL cosα este momentul forței de reacție a suportului; (4)

Ținând cont de semnele momentelor, scriem ecuația

NL cosα + Slρ în g (L l )cosα = SLρ o g L cosα (7)
2 2

având în vedere că conform celei de-a treia legi a lui Newton, forța de reacție a fundului vasului este egală cu forța F d cu care acul de tricotat apasă pe fundul vasului notăm N = F d și din ecuația (7) exprimăm această forță:

F d = [ 1 Lρ o– (1 – l )lρ în ] Sg (8).
2 2L

Să înlocuim datele numerice și să obținem asta

F d = 0,025 N.

Răspuns. F d = 0,025 N.

Cilindru care contine m 1 = 1 kg azot, în timpul testării de rezistență a explodat la temperatură t 1 = 327°C. Ce masă de hidrogen m 2 ar putea fi depozitat într-un astfel de cilindru la o temperatură t 2 = 27°C, având o marjă de siguranță de cinci ori? Masa molara azot M 1 = 28 g/mol, hidrogen M 2 = 2 g/mol.

Soluţie. Să scriem ecuația de stare a gazului ideal Mendeleev-Clapeyron pentru azot

Unde V- volumul cilindrului, T 1 = t 1 + 273°C. În funcție de stare, hidrogenul poate fi stocat la presiune p 2 = p 1 /5; (3) Având în vedere că

Putem exprima masa hidrogenului lucrând direct cu ecuațiile (2), (3), (4). Formula finală arată astfel:

m 2 = m 1 M 2 T 1 (5).
5 M 1 T 2

După înlocuirea datelor numerice m 2 = 28 g.

Răspuns. m 2 = 28 g.

Într-un circuit oscilator ideal, amplitudinea fluctuațiilor curentului în inductor este eu m= 5 mA, iar amplitudinea tensiunii pe condensator U m= 2,0 V. La timp t tensiunea pe condensator este de 1,2 V. Găsiți curentul din bobină în acest moment.

Soluţie.Într-un circuit oscilator ideal, energia oscilativă este conservată. Pentru un moment de timp t, legea conservării energiei are forma

C U 2 + L eu 2 = L eu m 2 (1)
2 2 2

Pentru valorile de amplitudine (maximum) scriem

iar din ecuația (2) exprimăm

C = eu m 2 (4).
L U m 2

Să înlocuim (4) în (3). Ca rezultat obținem:

eu = eu m (5)

Astfel, curentul din bobină la momentul respectiv t egal cu

eu= 4,0 mA.

Răspuns. eu= 4,0 mA.

Există o oglindă în fundul unui rezervor de 2 m adâncime. O rază de lumină, care trece prin apă, se reflectă din oglindă și iese din apă. Indicele de refracție al apei este de 1,33. Aflați distanța dintre punctul de intrare al fasciculului în apă și punctul de ieșire al fasciculului din apă dacă unghiul de incidență al fasciculului este de 30°

Soluţie. Să facem un desen explicativ


α este unghiul de incidență al fasciculului;

β este unghiul de refracție al fasciculului în apă;

AC este distanța dintre punctul de intrare al fasciculului în apă și punctul de ieșire al fasciculului din apă.

Conform legii refracției luminii

sinβ = sinα (3)
n 2

Luați în considerare ΔADB dreptunghiular. În ea AD = h, apoi DB = AD

tgβ = h tgβ = h sinα = h sinβ = h sinα (4)
cosβ

Obținem următoarea expresie:

AC = 2 DB = 2 h sinα (5)

Să înlocuim valorile numerice în formula rezultată (5)

Răspuns. 1,63 m.

În pregătirea pentru examenul de stat unificat, vă invităm să vă familiarizați cu program de lucru în fizică pentru clasele 7-9 la linia UMK Peryshkina A.V.Şi program de lucru la nivel avansat pentru clasele 10-11 pentru materiale didactice Myakisheva G.Ya. Programele sunt disponibile pentru vizionare și descărcare gratuită tuturor utilizatorilor înregistrați.

Examenul de stat unificat 2017 Fizică Sarcini de testare tipice Lukashev

M.: 2017 - 120 p.

Sarcinile de testare tipice în fizică conțin 10 seturi variante de sarcini, compilate ținând cont de toate caracteristicile și cerințele Examenului de stat unificat din 2017. Scopul manualului este de a oferi cititorilor informații despre structura și conținutul materialelor de măsurare a testelor din 2017 în fizică, precum și gradul de dificultate al sarcinilor. Colecția conține răspunsuri la toate opțiunile de testare, precum și soluții la cele mai dificile probleme din toate cele 10 opțiuni. În plus, sunt furnizate mostre de formulare utilizate în examenul de stat unificat. Echipa de autori este specialiști ai Comisiei Federale de Subiecte a Examenului de Stat Unificat în Fizică. Manualul se adresează profesorilor pentru pregătirea elevilor pentru examenul de fizică, iar elevilor de liceu pentru autopregătire și autocontrol.

Format: pdf

Dimensiune: 4,3 MB

Urmăriți, descărcați: drive.google


CONŢINUT
Instrucțiuni pentru efectuarea lucrărilor 4
OPȚIUNEA 1 9
Partea 1 9
Partea 2 15
OPȚIUNEA 2 17
Partea 1 17
Partea 2 23
OPȚIUNEA 3 25
Partea 1 25
Partea 2 31
OPȚIUNEA 4 34
Partea 1 34
Partea 2 40
OPȚIUNEA 5 43
Partea 1 43
Partea 2 49
OPȚIUNEA 6 51
Partea 1 51
Partea 2 57
OPȚIUNEA 7 59
Partea 1 59
Partea 2 65
OPȚIUNEA 8 68
Partea 1 68
Partea 2 73
OPȚIUNEA 9 76
Partea 1 76
Partea 2 82
OPȚIUNEA 10 85
Partea 1 85
Partea 2 91
RĂSPUNSURI. SISTEM DE EVALUARE A EXAMINĂRII
LUCRĂRI ÎN FIZICĂ 94

Pentru a finaliza lucrările de repetiție în fizică, sunt alocate 3 ore și 55 de minute (235 de minute). Lucrarea constă din 2 părți, inclusiv 31 de sarcini.
În sarcinile 1-4, 8-10, 14, 15, 20, 24-26 răspunsul este un număr întreg sau finit zecimal. Scrieți numărul în câmpul de răspuns în textul lucrării, și apoi transferați conform eșantionului de mai jos în formularul de răspuns nr. 1. Unități de măsură mărimi fizice nu e nevoie sa scrii.
Răspunsul la sarcinile 27-31 include descriere detaliatăîntregul progres al sarcinii. În formularul de răspuns nr. 2, indicați numărul sarcinii și notați soluția completă a acesteia.
La efectuarea calculelor, este permisă utilizarea unui calculator neprogramabil.
Toate formularele Unified State Exam sunt completate cu cerneală neagră strălucitoare. Puteți folosi stilouri cu gel, capilare sau stilografice.
Când finalizați sarcinile, puteți utiliza o schiță. Înscrierile din proiect nu sunt luate în considerare la notarea lucrărilor.
Punctele pe care le primiți pentru sarcinile finalizate sunt însumate. Încercați să finalizați cât mai multe sarcini posibil și câștigați cel mai mare număr puncte.

Pregătirea pentru OGE și examenul de stat unificat

Învățământ secundar general

Linia UMK A.V. Fizică (10-11) (de bază, avansat)

Linia UMK A.V. Fizică (7-9)

Linia UMK A.V. Fizică (7-9)

Pregătirea pentru examenul de stat unificat la fizică: exemple, soluții, explicații

Analizăm sarcinile Examenului de stat unificat la fizică (Opțiunea C) împreună cu profesorul.

Lebedeva Alevtina Sergeevna, profesor de fizică, 27 de ani de experiență în muncă. Certificat de Onoare de la Ministerul Educației din Regiunea Moscova (2013), Recunoștință din partea șefului Districtului Municipal Voskresensky (2015), Certificat de la Președintele Asociației Profesorilor de Matematică și Fizică din Regiunea Moscova (2015).

Lucrarea prezintă sarcini de diferite niveluri de dificultate: de bază, avansate și înalte. Sarcinile de nivel de bază sunt sarcini simple care testează stăpânirea celor mai importante concepte, modele, fenomene și legi fizice. Sarcinile de nivel avansat au ca scop testarea capacității de a utiliza concepte și legile fizicii pentru a analiza diverse procese și fenomene, precum și capacitatea de a rezolva probleme folosind una sau două legi (formule) pe oricare dintre subiectele cursului de fizică școlară. În lucrarea 4, sarcinile din partea 2 sunt sarcini de un nivel ridicat de complexitate și testează capacitatea de a folosi legile și teoriile fizicii într-o situație schimbată sau nouă. Finalizarea unor astfel de sarcini necesită aplicarea cunoștințelor din două sau trei secțiuni de fizică simultan, adică. nivel înalt de pregătire. Această opțiune corespunde pe deplin cu demo versiunea examenului de stat unificat 2017, sarcini preluate din banca deschisă de sarcini de examinare unificată de stat.

Figura prezintă un grafic al modulului de viteză în funcție de timp t. Determinați din grafic distanța parcursă de mașină în intervalul de timp de la 0 la 30 s.


Soluţie. Calea parcursă de o mașină în intervalul de timp de la 0 la 30 s poate fi definită cel mai ușor ca aria unui trapez, ale cărui baze sunt intervalele de timp (30 – 0) = 30 s și (30 – 10). ) = 20 s, iar înălțimea este viteza v= 10 m/s, adică

S = (30 + 20) Cu 10 m/s = 250 m.
2

Răspuns. 250 m.

O sarcină de 100 kg este ridicată vertical în sus cu ajutorul unui cablu. Figura arată dependența proiecției vitezei V sarcina pe axa îndreptată în sus, în funcție de timp t. Determinați modulul forței de tensionare a cablului în timpul ridicării.



Soluţie. Conform graficului de dependență a proiecției vitezei v sarcină pe o axă îndreptată vertical în sus, în funcție de timp t, putem determina proiecția accelerației sarcinii

o = v = (8 – 2) m/s = 2 m/s 2.
t 3 s

Sarcina este acționată de: forța gravitațională îndreptată vertical în jos și forța de tensiune a cablului îndreptată vertical în sus de-a lungul cablului (vezi Fig. 2. Să notăm ecuația de bază a dinamicii. Să folosim a doua lege a lui Newton. Suma geometrică a forțelor care acționează asupra unui corp este egală cu produsul dintre masa corpului și accelerația care îi este conferită.

+ = (1)

Să scriem ecuația pentru proiecția vectorilor în sistemul de referință asociat cu pământul, îndreptând axa OY în sus. Proiecția forței de tensiune este pozitivă, deoarece direcția forței coincide cu direcția axei OY, proiecția forței gravitaționale este negativă, deoarece vectorul forță este opus axei OY, proiecția vectorului accelerație este de asemenea pozitiv, astfel încât corpul se mișcă cu accelerație ascendentă. Avem

Tmg = ma (2);

din formula (2) modulul forței de tracțiune

T = m(g + o) = 100 kg (10 + 2) m/s 2 = 1200 N.

Răspuns. 1200 N.

Corpul este târât de-a lungul unei suprafețe orizontale aspre cu o viteză constantă al cărei modul este de 1,5 m/s, aplicându-i o forță așa cum se arată în figura (1). În acest caz, modulul forței de frecare de alunecare care acționează asupra corpului este de 16 N. Care este puterea dezvoltată de forță? F?



Soluţie. Să ne imaginăm procesul fizic specificat în enunțul problemei și să facem un desen schematic indicând toate forțele care acționează asupra corpului (Fig. 2). Să scriem ecuația de bază a dinamicii.

Tr + + = (1)

După ce am ales un sistem de referință asociat cu o suprafață fixă, scriem ecuațiile pentru proiecția vectorilor pe axele de coordonate selectate. Conform condițiilor problemei, corpul se mișcă uniform, deoarece viteza sa este constantă și egală cu 1,5 m/s. Aceasta înseamnă că accelerația corpului este zero. Două forţe acţionează orizontal asupra corpului: forţa de frecare de alunecare tr. și forța cu care este târât corpul. Proiecția forței de frecare este negativă, deoarece vectorul forță nu coincide cu direcția axei X. Proiecția forței F pozitiv. Vă reamintim că pentru a găsi proiecția, coborâm perpendiculara de la începutul și sfârșitul vectorului la axa selectată. Ținând cont de asta avem: F cosα – F tr = 0; (1) să exprimăm proiecția forței F, Aceasta F cosα = F tr = 16 N; (2) atunci puterea dezvoltată de forță va fi egală cu N = F cosα V(3) Să facem o înlocuire, ținând cont de ecuația (2) și să înlocuim datele corespunzătoare în ecuația (3):

N= 16 N · 1,5 m/s = 24 W.

Răspuns. 24 W.

O sarcină atașată la un arc ușor cu o rigiditate de 200 N/m suferă oscilații verticale. Figura prezintă un grafic al dependenței de deplasare xîncărcă din când în când t. Determinați care este masa încărcăturii. Rotunjiți răspunsul la un număr întreg.


Soluţie. O masă de pe un arc suferă oscilații verticale. Conform graficului deplasării sarcinii X din când în când t, determinăm perioada de oscilație a sarcinii. Perioada de oscilație este egală cu T= 4 s; din formula T= 2π să exprimăm masa m marfă


= T ; m = T 2 ; m = k T 2 ; m= 200 N/m (4 s) 2 = 81,14 kg ≈ 81 kg.
k 4π 2 4π 2 39,438

Răspuns: 81 kg.

În figură se prezintă un sistem de două blocuri de lumină și un cablu fără greutate, cu ajutorul căruia poți să ții în echilibru sau să ridici o sarcină cu o greutate de 10 kg. Frecarea este neglijabilă. Pe baza analizei figurii de mai sus, selectați două afirmații adevărate și indicați numărul lor în răspunsul dvs.


  1. Pentru a menține sarcina în echilibru, trebuie să acționați asupra capătului frânghiei cu o forță de 100 N.
  2. Sistemul de blocuri prezentat în figură nu oferă niciun câștig în putere.
  3. h, trebuie să scoateți o secțiune din lungimea frânghiei 3 h.
  4. Pentru a ridica încet o încărcătură la o înălțime hh.

Soluţie.În această problemă, este necesar să ne amintim mecanisme simple, și anume blocuri: un bloc mobil și unul fix. Blocul mobil oferă un câștig dublu în rezistență, în timp ce secțiunea de frânghie trebuie trasă de două ori mai mult, iar blocul fix este folosit pentru a redirecționa forța. În muncă, mecanismele simple de câștig nu dau. După analizarea problemei, selectăm imediat afirmațiile necesare:

  1. Pentru a ridica încet o încărcătură la o înălțime h, trebuie să scoateți o secțiune din lungimea frânghiei 2 h.
  2. Pentru a menține sarcina în echilibru, trebuie să acționați asupra capătului frânghiei cu o forță de 50 N.

Răspuns. 45.

O greutate de aluminiu atașată de un fir imponderabil și inextensibil este complet scufundată într-un vas cu apă. Sarcina nu atinge pereții și fundul vasului. Apoi, o greutate de fier, a cărei masă este egală cu masa greutății de aluminiu, este scufundată în același vas cu apă. Cum se vor schimba modulul forței de întindere a firului și modulul forței gravitaționale care acționează asupra sarcinii ca urmare a acestui fapt?

  1. Creșteri;
  2. Scăderi;
  3. Nu se schimba.


Soluţie. Analizăm starea problemei și evidențiem acei parametri care nu se modifică în timpul studiului: aceștia sunt masa corpului și lichidul în care corpul este scufundat pe un fir. După aceasta, este mai bine să faceți un desen schematic și să indicați forțele care acționează asupra sarcinii: tensiunea firului F control, îndreptat în sus de-a lungul firului; gravitația îndreptată vertical în jos; forța arhimediană o, acționând din partea lichidului asupra corpului scufundat și îndreptat în sus. În funcție de condițiile problemei, masa sarcinilor este aceeași, prin urmare, modulul forței gravitaționale care acționează asupra sarcinii nu se modifică. Deoarece densitatea încărcăturii este diferită, volumul va fi și el diferit.

V = m .
p

Densitatea fierului este de 7800 kg/m3, iar densitatea încărcăturii din aluminiu este de 2700 kg/m3. Prin urmare, Vşi< V a. Corpul este în echilibru, rezultanta tuturor forțelor care acționează asupra corpului este zero. Să direcționăm axa de coordonate OY în sus. Scriem ecuația de bază a dinamicii, ținând cont de proiecția forțelor, sub formă F control + F amg= 0; (1) Să exprimăm forța de tensiune F control = mgF a(2); Forța arhimediană depinde de densitatea lichidului și de volumul părții imersate a corpului F a = ρ gV p.h.t. (3); Densitatea lichidului nu se modifică, iar volumul corpului de fier este mai mic Vşi< V a, prin urmare forța arhimediană care acționează asupra sarcinii de fier va fi mai mică. Concluzionăm despre modulul forței de întindere a firului, lucrând cu ecuația (2), acesta va crește.

Răspuns. 13.

Un bloc de masă m alunecă de pe un plan fix înclinat brut cu un unghi α la bază. Modulul de accelerație al blocului este egal cu o, modulul vitezei blocului crește. Rezistența aerului poate fi neglijată.

Stabiliți o corespondență între mărimile fizice și formulele cu care acestea pot fi calculate. Pentru fiecare poziție din prima coloană, selectați poziția corespunzătoare din a doua coloană și notați numerele selectate în tabel sub literele corespunzătoare.

B) Coeficientul de frecare între un bloc și un plan înclinat

3) mg cosα

4) sinα – o
g cosα

Soluţie. Această sarcină necesită aplicarea legilor lui Newton. Vă recomandăm să faceți un desen schematic; indică toate caracteristicile cinematice ale mișcării. Dacă este posibil, descrieți vectorul de accelerație și vectorii tuturor forțelor aplicate corpului în mișcare; amintiți-vă că forțele care acționează asupra unui corp sunt rezultatul interacțiunii cu alte corpuri. Apoi scrieți ecuația de bază a dinamicii. Selectați un sistem de referință și scrieți ecuația rezultată pentru proiecția vectorilor de forță și accelerație;

Urmând algoritmul propus vom realiza un desen schematic (Fig. 1). Figura prezintă forțele aplicate centrului de greutate al blocului și axelor de coordonate ale sistemului de referință asociate cu suprafața planului înclinat. Deoarece toate forțele sunt constante, mișcarea blocului va fi uniform variabilă odată cu creșterea vitezei, adică. vectorul accelerație este îndreptat în direcția mișcării. Să alegem direcția axelor așa cum se arată în figură. Să notăm proiecțiile forțelor pe axele selectate.


Să scriem ecuația de bază a dinamicii:

Tr + = (1)

Să scriem această ecuație (1) pentru proiecția forțelor și a accelerației.

Pe axa OY: proiecția forței de reacție a solului este pozitivă, deoarece vectorul coincide cu direcția axei OY Ny = N; proiecția forței de frecare este zero deoarece vectorul este perpendicular pe axă; proiecția gravitației va fi negativă și egală mg y= mg cosα; proiecție vectorială de accelerație un y= 0, deoarece vectorul accelerație este perpendicular pe axă. Avem Nmg cosα = 0 (2) din ecuație exprimăm forța de reacție care acționează asupra blocului din partea planului înclinat. N = mg cosα (3). Să notăm proiecțiile pe axa OX.

Pe axa OX: proiecția forței N este egal cu zero, deoarece vectorul este perpendicular pe axa OX; Proiecția forței de frecare este negativă (vectorul este îndreptat în direcția opusă față de axa selectată); proiecția gravitației este pozitivă și egală cu mg x = mg sinα (4) dintr-un triunghi dreptunghic. Proiecția accelerației este pozitivă un x = o; Apoi scriem ecuația (1) ținând cont de proiecție mg sinα – F tr = ma (5); F tr = m(g sinα – o) (6); Amintiți-vă că forța de frecare este proporțională cu forța presiunii normale N.

Prin definiție F tr = μ N(7), exprimăm coeficientul de frecare al blocului pe planul înclinat.

μ = F tr = m(g sinα – o) = tgα – o (8).
N mg cosα g cosα

Selectăm pozițiile potrivite pentru fiecare literă.

Răspuns. A – 3; B – 2.

Sarcina 8. Oxigenul gazos este într-un vas cu un volum de 33,2 litri. Presiunea gazului este de 150 kPa, temperatura acestuia este de 127° C. Determinați masa gazului din acest vas. Exprimați răspunsul în grame și rotunjiți la cel mai apropiat număr întreg.

Soluţie. Este important să acordați atenție conversiei unităților în sistemul SI. Convertiți temperatura în Kelvin T = t°C + 273, volum V= 33,2 l = 33,2 · 10 –3 m 3 ; Transformăm presiunea P= 150 kPa = 150.000 Pa. Folosind ecuația de stare a gazelor ideale

Să exprimăm masa gazului.

Asigurați-vă că acordați atenție la ce unități li se cere să noteze răspunsul. Acest lucru este foarte important.

Răspuns.'48

Sarcina 9. Un gaz monoatomic ideal în cantitate de 0,025 mol s-a expandat adiabatic. În același timp, temperatura sa a scăzut de la +103°C la +23°C. Câtă muncă a fost făcută de gaz? Exprimați răspunsul în Jouli și rotunjiți la cel mai apropiat număr întreg.

Soluţie.În primul rând, gazul este numărul monoatomic de grade de libertate i= 3, în al doilea rând, gazul se extinde adiabatic - aceasta înseamnă fără schimb de căldură Q= 0. Gazul funcționează prin scăderea energiei interne. Ținând cont de acest lucru, scriem prima lege a termodinamicii sub forma 0 = ∆ U + O G; (1) să exprimăm lucrul cu gaz O g = –∆ U(2); Scriem modificarea energiei interne pentru un gaz monoatomic ca

Răspuns. 25 J.

Umiditatea relativă a unei porțiuni de aer la o anumită temperatură este de 10%. De câte ori trebuie schimbată presiunea acestei porțiuni de aer astfel încât, la o temperatură constantă, umiditatea relativă a acesteia să crească cu 25%?

Soluţie.Întrebările legate de aburul saturat și umiditatea aerului provoacă cel mai adesea dificultăți pentru școlari. Să folosim formula pentru a calcula umiditatea relativă a aerului

În funcție de condițiile problemei, temperatura nu se modifică, ceea ce înseamnă că presiunea vaporilor saturați rămâne aceeași. Să notăm formula (1) pentru două stări ale aerului.

φ 1 = 10%; φ 2 = 35%

Să exprimăm presiunea aerului din formulele (2), (3) și să găsim raportul de presiune.

P 2 = φ 2 = 35 = 3,5
P 1 φ 1 10

Răspuns. Presiunea trebuie crescută de 3,5 ori.

Substanța lichidă fierbinte a fost răcită lent într-un cuptor de topire la putere constantă. Tabelul prezintă rezultatele măsurătorilor temperaturii unei substanțe în timp.

Selectați din lista oferită două enunţuri care corespund rezultatelor măsurătorilor efectuate şi indică numărul acestora.

  1. Punctul de topire al substanței în aceste condiții este de 232°C.
  2. După 20 min. după începerea măsurătorilor, substanța era doar în stare solidă.
  3. Capacitatea termică a unei substanțe în stare lichidă și solidă este aceeași.
  4. După 30 min. după începerea măsurătorilor, substanța era doar în stare solidă.
  5. Procesul de cristalizare a substanței a durat mai mult de 25 de minute.

Soluţie. Pe măsură ce substanța s-a răcit, energia sa internă a scăzut. Rezultatele măsurătorilor de temperatură ne permit să determinăm temperatura la care o substanță începe să se cristalizeze. În timp ce o substanță se schimbă de la lichid la solid, temperatura nu se schimbă. Știind că temperatura de topire și temperatura de cristalizare sunt aceleași, alegem afirmația:

1. Punctul de topire al substanței în aceste condiții este de 232°C.

A doua afirmație corectă este:

4. După 30 min. după începerea măsurătorilor, substanța era doar în stare solidă. Deoarece temperatura în acest moment este deja sub temperatura de cristalizare.

Răspuns. 14.

Într-un sistem izolat, corpul A are o temperatură de +40°C, iar corpul B are o temperatură de +65°C. Aceste corpuri au fost aduse în contact termic unele cu altele. După ceva timp, a avut loc echilibrul termic. Cum s-a modificat temperatura corpului B și energia internă totală a corpurilor A și B ca rezultat?

Pentru fiecare cantitate, determinați natura corespunzătoare a modificării:

  1. Creștet;
  2. Scăzut;
  3. Nu s-a schimbat.

Notați numerele selectate pentru fiecare mărime fizică din tabel. Numerele din răspuns pot fi repetate.

Soluţie. Dacă într-un sistem izolat de corpuri nu au loc alte transformări de energie decât schimbul de căldură, atunci cantitatea de căldură degajată de corpurile a căror energie internă scade este egală cu cantitatea de căldură primită de corpurile a căror energie internă crește. (Conform legii conservării energiei.) În acest caz, energia internă totală a sistemului nu se modifică. Problemele de acest tip sunt rezolvate pe baza ecuației de echilibru termic.

U = ∑ n U i = 0 (1);
i = 1

unde ∆ U– modificarea energiei interne.

În cazul nostru, ca urmare a schimbului de căldură, energia internă a corpului B scade, ceea ce înseamnă că temperatura acestui corp scade. Energia internă a corpului A crește, deoarece corpul a primit o cantitate de căldură de la corpul B, temperatura acestuia va crește. Energia internă totală a corpurilor A și B nu se modifică.

Răspuns. 23.

Proton p, care zboară în golul dintre polii electromagnetului, are o viteză perpendiculară pe vectorul de inducție a câmpului magnetic, așa cum se arată în figură. Unde este forța Lorentz care acționează asupra protonului îndreptată față de desen (sus, către observator, departe de observator, în jos, stânga, dreapta)


Soluţie. Un câmp magnetic acţionează asupra unei particule încărcate cu forţa Lorentz. Pentru a determina direcția acestei forțe, este important să ne amintim regula mnemonică a mâinii stângi și să nu uitați să țineți cont de încărcătura particulei. Îndreptăm cele patru degete ale mâinii stângi de-a lungul vectorului viteză, pentru o particulă încărcată pozitiv, vectorul ar trebui să intre perpendicular în palmă, degetul mare setat la 90° arată direcția forței Lorentz care acționează asupra particulei. Ca rezultat, avem că vectorul forță Lorentz este îndreptat departe de observator în raport cu figură.

Răspuns. de la observator.

Modulul intensității câmpului electric într-un condensator de aer plat cu o capacitate de 50 μF este egal cu 200 V/m. Distanța dintre plăcile condensatorului este de 2 mm. Care este sarcina condensatorului? Scrieți răspunsul în µC.

Soluţie. Să convertim toate unitățile de măsură în sistemul SI. Capacitate C = 50 µF = 50 10 –6 F, distanța dintre plăci d= 2 · 10 –3 m Problema se referă la un condensator de aer plat - un dispozitiv pentru stocarea sarcinii electrice și a energiei câmpului electric. Din formula capacității electrice

Unde d– distanta dintre placi.

Să exprimăm tensiunea U=E d(4); Să înlocuim (4) în (2) și să calculăm sarcina condensatorului.

q = C · Ed= 50 10 –6 200 0,002 = 20 µC

Vă rugăm să fiți atenți la unitățile în care trebuie să scrieți răspunsul. L-am primit în coulombi, dar îl prezentăm în µC.

Răspuns. 20 uC.


Elevul a efectuat un experiment cu privire la refracția luminii, prezentat în fotografie. Cum se modifică unghiul de refracție al luminii care se propagă în sticlă și indicele de refracție al sticlei odată cu creșterea unghiului de incidență?

  1. Creșteri
  2. Scăderi
  3. Nu se schimba
  4. Înregistrați numerele selectate pentru fiecare răspuns în tabel. Numerele din răspuns pot fi repetate.

Soluţie.În probleme de acest gen, ne amintim ce este refracția. Aceasta este o schimbare a direcției de propagare a undei atunci când trece de la un mediu la altul. Este cauzată de faptul că vitezele de propagare a undelor în aceste medii sunt diferite. După ce ne-am dat seama în ce mediu se propagă lumina către care, să scriem legea refracției sub forma

sinα = n 2 ,
sinβ n 1

Unde n 2 – indicele absolut de refracție al sticlei, mediul în care trece lumina; n 1 este indicele absolut de refracție al primului mediu din care provine lumina. Pentru aer n 1 = 1. α este unghiul de incidență al fasciculului pe suprafața semicilindrului de sticlă, β este unghiul de refracție al fasciculului în sticlă. Mai mult, unghiul de refracție va fi mai mic decât unghiul de incidență, deoarece sticla este un mediu optic mai dens - un mediu cu un indice de refracție ridicat. Viteza de propagare a luminii în sticlă este mai mică. Vă rugăm să rețineți că măsurăm unghiuri de la perpendiculara restaurată la punctul de incidență al fasciculului. Dacă creșteți unghiul de incidență, atunci unghiul de refracție va crește. Acest lucru nu va schimba indicele de refracție al sticlei.

Răspuns.

Jumper de cupru la un moment dat t 0 = 0 începe să se miște cu o viteză de 2 m/s de-a lungul șinelor conductoare orizontale paralele, la capetele cărora este conectat un rezistor de 10 ohmi. Întregul sistem este într-un câmp magnetic vertical uniform. Rezistența jumperului și a șinelor este neglijabilă; Fluxul Ф al vectorului de inducție magnetică prin circuitul format din jumper, șine și rezistor se modifică în timp t așa cum se arată în grafic.


Folosind graficul, selectați două afirmații corecte și indicați numărul lor în răspunsul dvs.

  1. Până când t= 0,1 s modificarea fluxului magnetic prin circuit este de 1 mWb.
  2. Curentul de inducție în jumper în intervalul de la t= 0,1 s t= 0,3 s max.
  3. Modulul FEM inductiv care apare în circuit este de 10 mV.
  4. Puterea curentului de inducție care curge în jumper este de 64 mA.
  5. Pentru a menține mișcarea jumperului, i se aplică o forță, a cărei proiecție pe direcția șinelor este de 0,2 N.

Soluţie. Folosind un grafic al dependenței în timp a fluxului vectorului de inducție magnetică prin circuit, vom determina zonele în care se modifică fluxul F și unde modificarea fluxului este zero. Acest lucru ne va permite să determinăm intervalele de timp în care un curent indus va apărea în circuit. Afirmație adevărată:

1) Până la momentul respectiv t= 0,1 s modificarea fluxului magnetic prin circuit este egală cu 1 mWb ∆Ф = (1 – 0) 10 –3 Wb; Modulul FEM inductiv care apare în circuit este determinat folosind legea EMR

Răspuns. 13.


Pe baza graficului curentului în funcție de timp într-un circuit electric a cărui inductanță este de 1 mH, determinați modulul auto-inductiv fem în intervalul de timp de la 5 la 10 s. Scrieți răspunsul în µV.

Soluţie. Să convertim toate cantitățile în sistemul SI, de exemplu. convertim inductanța de 1 mH în H, obținem 10 –3 H. De asemenea, vom converti curentul prezentat în figură în mA în A prin înmulțirea cu 10 –3.

Formula pentru FEM de auto-inducție are forma

in acest caz, intervalul de timp este dat in functie de conditiile problemei

t= 10 s – 5 s = 5 s

secunde și folosind graficul determinăm intervalul de schimbare a curentului în acest timp:

eu= 30 10 –3 – 20 10 –3 = 10 10 –3 = 10 –2 A.

Înlocuim valorile numerice în formula (2), obținem

| Ɛ | = 2 ·10 –6 V, sau 2 µV.

Răspuns. 2.

Două plăci transparente plan-paralele sunt presate strâns una pe cealaltă. O rază de lumină cade din aer pe suprafața primei plăci (vezi figura). Se știe că indicele de refracție al plăcii superioare este egal cu n 2 = 1,77. Stabiliți o corespondență între mărimile fizice și semnificațiile acestora. Pentru fiecare poziție din prima coloană, selectați poziția corespunzătoare din a doua coloană și notați numerele selectate în tabel sub literele corespunzătoare.


Soluţie. Pentru rezolvarea problemelor privind refracția luminii la interfața dintre două medii, în special problemele privind trecerea luminii prin plăci plan-paralele, se poate recomanda următoarea procedură de rezolvare: realizarea unui desen care să indice traseul razelor care vin de la un mediu la altul; În punctul de incidență al fasciculului la interfața dintre cele două medii, trageți o normală la suprafață, marcați unghiurile de incidență și de refracție. Acordați o atenție deosebită densității optice a suportului luat în considerare și amintiți-vă că atunci când un fascicul de lumină trece de la un mediu optic mai puțin dens la un mediu optic mai dens, unghiul de refracție va fi mai mic decât unghiul de incidență. Figura arată unghiul dintre raza incidentă și suprafață, dar avem nevoie de unghiul de incidență. Amintiți-vă că unghiurile sunt determinate de perpendiculara restaurată în punctul de impact. Determinăm că unghiul de incidență al fasciculului pe suprafață este de 90° – 40° = 50°, indicele de refracție n 2 = 1,77; n 1 = 1 (aer).

Să scriem legea refracției

sinβ = păcat50 = 0,4327 ≈ 0,433
1,77

Să trasăm calea aproximativă a fasciculului prin plăci. Folosim formula (1) pentru limitele 2–3 și 3–1. Ca răspuns primim

A) Sinusul unghiului de incidență al fasciculului pe limita 2–3 dintre plăci este 2) ≈ 0,433;

B) Unghiul de refracție al fasciculului la trecerea graniței 3–1 (în radiani) este 4) ≈ 0,873.

Răspuns. 24.

Determinați câte particule α și câți protoni sunt produși ca rezultat al reacției de fuziune termonucleară

+ → x+ y;

Soluţie.În toate reacțiile nucleare se respectă legile de conservare a sarcinii electrice și a numărului de nucleoni. Să notăm cu x numărul de particule alfa, y numărul de protoni. Să inventăm ecuații

+ → x + y;

rezolvand sistemul avem asta x = 1; y = 2

Răspuns. 1 – α-particulă; 2 – protoni.

Modulul de impuls al primului foton este de 1,32 · 10 –28 kg m/s, ceea ce este cu 9,48 · 10 –28 kg m/s mai mic decât modulul de impuls al celui de-al doilea foton. Aflați raportul de energie E 2 /E 1 al celui de-al doilea și al primului foton. Rotunjiți răspunsul la cea mai apropiată zecime.

Soluţie. Momentul celui de-al doilea foton este mai mare decât impulsul primului foton conform condiției, ceea ce înseamnă că poate fi reprezentat p 2 = p 1 + Δ p(1). Energia unui foton poate fi exprimată în termeni de impuls al fotonului folosind următoarele ecuații. Acest E = mc 2 (1) și p = mc(2), atunci

E = pc (3),

Unde E- energie fotonica, p– impulsul fotonului, m – masa fotonului, c= 3 · 10 8 m/s – viteza luminii. Ținând cont de formula (3) avem:

E 2 = p 2 = 8,18;
E 1 p 1

Rotunjim răspunsul la zecimi și obținem 8.2.

Răspuns. 8,2.

Nucleul atomului a suferit dezintegrare radioactivă a pozitronilor β. Cum s-a schimbat sarcina electrică a nucleului și numărul de neutroni din acesta ca urmare a acestui fapt?

Pentru fiecare cantitate, determinați natura corespunzătoare a modificării:

  1. Creștet;
  2. Scăzut;
  3. Nu s-a schimbat.

Notați numerele selectate pentru fiecare mărime fizică din tabel. Numerele din răspuns pot fi repetate.

Soluţie. Pozitronul β - dezintegrarea nucleului atomic are loc atunci când un proton se transformă într-un neutron cu emisia unui pozitron. Ca urmare, numărul de neutroni din nucleu crește cu unul, sarcina electrică scade cu unul, iar numărul de masă al nucleului rămâne neschimbat. Astfel, reacția de transformare a elementului este următoarea:

Răspuns. 21.

Au fost efectuate cinci experimente în laborator pentru a observa difracția folosind diferite rețele de difracție. Fiecare dintre rețele a fost iluminat de fascicule paralele de lumină monocromatică cu o anumită lungime de undă. În toate cazurile, lumina a căzut perpendicular pe grătar. În două dintre aceste experimente, s-a observat același număr de maxime principale de difracție. Indicați mai întâi numărul experimentului în care a fost folosit un rețele de difracție cu o perioadă mai scurtă și apoi numărul experimentului în care s-a folosit un rețele de difracție cu o perioadă mai mare.

Soluţie. Difracția luminii este fenomenul unui fascicul de lumină într-o regiune de umbră geometrică. Difracția poate fi observată atunci când pe calea unei unde luminoase există zone opace sau găuri în obstacole mari care sunt opace la lumină, iar dimensiunile acestor zone sau găuri sunt proporționale cu lungimea de undă. Unul dintre cele mai importante dispozitive de difracție este rețeaua de difracție. Direcțiile unghiulare către maximele modelului de difracție sunt determinate de ecuație

d sinφ = kλ (1),

Unde d– perioada rețelei de difracție, φ – unghiul dintre normala rețelei și direcția către unul dintre maximele diagramei de difracție, λ – lungimea de undă a luminii, k– un număr întreg numit ordinea maximului de difracție. Să exprimăm din ecuația (1)

Selectând perechile în funcție de condițiile experimentale, selectăm mai întâi 4 unde a fost folosit un rețele de difracție cu o perioadă mai scurtă, iar apoi numărul experimentului în care a fost utilizat un rețeau de difracție cu o perioadă mai mare - acesta este 2.

Răspuns. 42.

Curentul trece printr-un rezistor bobinat. Rezistorul a fost înlocuit cu altul, cu un fir din același metal și aceeași lungime, dar având jumătate din aria secțiunii transversale, iar jumătate din curent a fost trecut prin el. Cum se va schimba tensiunea pe rezistor și rezistența acestuia?

Pentru fiecare cantitate, determinați natura corespunzătoare a modificării:

  1. Va crește;
  2. Va scădea;
  3. Nu se va schimba.

Notați numerele selectate pentru fiecare mărime fizică din tabel. Numerele din răspuns pot fi repetate.

Soluţie. Este important să ne amintim de ce valori depinde rezistența conductorului. Formula de calcul a rezistenței este

Legea lui Ohm pentru o secțiune a circuitului, din formula (2), exprimăm tensiunea

U = eu R (3).

În funcție de condițiile problemei, al doilea rezistor este realizat din sârmă din același material, aceeași lungime, dar cu secțiune transversală diferită. Zona este de două ori mai mică. Înlocuind în (1) constatăm că rezistența crește de 2 ori, iar curentul scade de 2 ori, prin urmare, tensiunea nu se modifică.

Răspuns. 13.

Perioada de oscilație a unui pendul matematic pe suprafața Pământului este de 1,2 ori mai mare decât perioada de oscilație a acestuia pe o anumită planetă. Care este magnitudinea accelerației datorate gravitației pe această planetă? Influența atmosferei în ambele cazuri este neglijabilă.

Soluţie. Un pendul matematic este un sistem format dintr-un fir ale cărui dimensiuni sunt mult mai mari decât dimensiunile mingii și ale mingii în sine. Poate apărea dificultăți dacă se uită formula lui Thomson pentru perioada de oscilație a unui pendul matematic.

T= 2π (1);

l– lungimea pendulului matematic; g– accelerare în cădere liberă.

După condiție

Să ne exprimăm din (3) g n = 14,4 m/s 2. Trebuie remarcat faptul că accelerația gravitației depinde de masa planetei și de rază

Răspuns. 14,4 m/s 2.

Un conductor drept de 1 m lungime care transportă un curent de 3 A este situat într-un câmp magnetic uniform cu inducție ÎN= 0,4 Tesla la un unghi de 30° față de vector. Care este magnitudinea forței care acționează asupra conductorului din câmpul magnetic?

Soluţie. Dacă plasați un conductor purtător de curent într-un câmp magnetic, câmpul de pe conductorul purtător de curent va acționa cu o forță Amperi. Să scriem formula pentru modulul forței Ampere

F A = eu LB sinα ;

F A = 0,6 N

Răspuns. F A = 0,6 N.

Energia câmpului magnetic stocată în bobină atunci când trece un curent continuu prin ea este egală cu 120 J. De câte ori trebuie crescută puterea curentului care circulă prin înfășurarea bobinei pentru ca energia câmpului magnetic stocată în ea să crească de 5760 J.

Soluţie. Energia câmpului magnetic al bobinei se calculează prin formula

W m = LI 2 (1);
2

După condiție W 1 = 120 J, atunci W 2 = 120 + 5760 = 5880 J.

eu 1 2 = 2W 1 ; eu 2 2 = 2W 2 ;
L L

Apoi raportul actual

eu 2 2 = 49; eu 2 = 7
eu 1 2 eu 1

Răspuns. Puterea curentului trebuie crescută de 7 ori. Introduceți doar numărul 7 pe formularul de răspuns.

Un circuit electric este format din două becuri, două diode și o spire de fir conectată așa cum se arată în figură. (O diodă permite curentului să curgă doar într-o singură direcție, așa cum se arată în partea de sus a imaginii.) Care dintre becuri se va aprinde dacă polul nord al magnetului este apropiat de bobină? Explicați răspunsul indicând ce fenomene și tipare ați folosit în explicație.


Soluţie. Liniile de inducție magnetică ies de la polul nord al magnetului și diverg. Pe măsură ce magnetul se apropie, fluxul magnetic prin bobina de sârmă crește. În conformitate cu regula lui Lenz, câmpul magnetic creat de curentul inductiv al bobinei trebuie direcționat spre dreapta. Conform regulii gimletului, curentul ar trebui să curgă în sensul acelor de ceasornic (cum este văzut din stânga). Dioda din al doilea circuit al lămpii trece în această direcție. Aceasta înseamnă că a doua lampă se va aprinde.

Răspuns. A doua lampă se va aprinde.

Lungimea spițelor din aluminiu L= 25 cm și aria secțiunii transversale S= 0,1 cm 2 suspendat pe un fir de capătul superior. Capătul inferior se sprijină pe fundul orizontal al vasului în care se toarnă apă. Lungimea părții scufundate a spiței l= 10 cm Aflați forța F, cu care acul de tricotat apasă pe fundul vasului, dacă se știe că firul este amplasat vertical. Densitatea aluminiului ρ a = 2,7 g/cm 3, densitatea apei ρ b = 1,0 g/cm 3. Accelerația gravitației g= 10 m/s 2

Soluţie. Să facem un desen explicativ.


– Forța de întindere a firului;

– Forța de reacție a fundului vasului;

a este forța arhimediană care acționează numai asupra părții imersate a corpului și aplicată în centrul părții scufundate a spiței;

– forța gravitațională care acționează asupra spiței de pe Pământ și se aplică pe centrul întregii spițe.

Prin definiție, masa spiței m iar modulul de forță arhimedian se exprimă după cum urmează: m = SLρ a (1);

F a = Slρ în g (2)

Să luăm în considerare momentele forțelor raportate la punctul de suspendare al spiței.

M(T) = 0 – momentul forței de întindere; (3)

M(N)= NL cosα este momentul forței de reacție a suportului; (4)

Ținând cont de semnele momentelor, scriem ecuația

NL cosα + Slρ în g (L l )cosα = SLρ o g L cosα (7)
2 2

având în vedere că conform celei de-a treia legi a lui Newton, forța de reacție a fundului vasului este egală cu forța F d cu care acul de tricotat apasă pe fundul vasului notăm N = F d și din ecuația (7) exprimăm această forță:

F d = [ 1 Lρ o– (1 – l )lρ în ] Sg (8).
2 2L

Să înlocuim datele numerice și să obținem asta

F d = 0,025 N.

Răspuns. F d = 0,025 N.

Cilindru care contine m 1 = 1 kg azot, în timpul testării de rezistență a explodat la temperatură t 1 = 327°C. Ce masă de hidrogen m 2 ar putea fi depozitat într-un astfel de cilindru la o temperatură t 2 = 27°C, având o marjă de siguranță de cinci ori? Masa molară a azotului M 1 = 28 g/mol, hidrogen M 2 = 2 g/mol.

Soluţie. Să scriem ecuația de stare a gazului ideal Mendeleev-Clapeyron pentru azot

Unde V- volumul cilindrului, T 1 = t 1 + 273°C. În funcție de stare, hidrogenul poate fi stocat la presiune p 2 = p 1 /5; (3) Având în vedere că

Putem exprima masa hidrogenului lucrând direct cu ecuațiile (2), (3), (4). Formula finală arată astfel:

m 2 = m 1 M 2 T 1 (5).
5 M 1 T 2

După înlocuirea datelor numerice m 2 = 28 g.

Răspuns. m 2 = 28 g.

Într-un circuit oscilator ideal, amplitudinea fluctuațiilor curentului în inductor este eu m= 5 mA, iar amplitudinea tensiunii pe condensator U m= 2,0 V. La timp t tensiunea pe condensator este de 1,2 V. Găsiți curentul din bobină în acest moment.

Soluţie.Într-un circuit oscilator ideal, energia oscilativă este conservată. Pentru un moment de timp t, legea conservării energiei are forma

C U 2 + L eu 2 = L eu m 2 (1)
2 2 2

Pentru valorile de amplitudine (maximum) scriem

iar din ecuația (2) exprimăm

C = eu m 2 (4).
L U m 2

Să înlocuim (4) în (3). Ca rezultat obținem:

eu = eu m (5)

Astfel, curentul din bobină la momentul respectiv t egal cu

eu= 4,0 mA.

Răspuns. eu= 4,0 mA.

Există o oglindă în fundul unui rezervor de 2 m adâncime. O rază de lumină, care trece prin apă, se reflectă din oglindă și iese din apă. Indicele de refracție al apei este de 1,33. Aflați distanța dintre punctul de intrare al fasciculului în apă și punctul de ieșire al fasciculului din apă dacă unghiul de incidență al fasciculului este de 30°

Soluţie. Să facem un desen explicativ


α este unghiul de incidență al fasciculului;

β este unghiul de refracție al fasciculului în apă;

AC este distanța dintre punctul de intrare al fasciculului în apă și punctul de ieșire al fasciculului din apă.

Conform legii refracției luminii

sinβ = sinα (3)
n 2

Luați în considerare ΔADB dreptunghiular. În ea AD = h, apoi DB = AD

tgβ = h tgβ = h sinα = h sinβ = h sinα (4)
cosβ

Obținem următoarea expresie:

AC = 2 DB = 2 h sinα (5)

Să înlocuim valorile numerice în formula rezultată (5)

Răspuns. 1,63 m.

În pregătirea pentru examenul de stat unificat, vă invităm să vă familiarizați cu program de lucru în fizică pentru clasele 7-9 la linia UMK Peryshkina A.V.Şi program de lucru la nivel avansat pentru clasele 10-11 pentru materiale didactice Myakisheva G.Ya. Programele sunt disponibile pentru vizualizare și descărcare gratuită pentru toți utilizatorii înregistrați.

Test online Examenul de stat unificat în fizică, pe care îl puteți promova portal educațional Site-ul vă va ajuta să vă pregătiți mai bine pentru examenul de stat unificat. Examenul Unificat de Stat este un eveniment foarte important de care va depinde admiterea la facultate. Și a ta va depinde de viitoare profesie. Prin urmare, ar trebui să abordați problema pregătirii pentru examenul de stat unificat în mod responsabil. Cel mai bine este să profitați de toate mijloacele disponibile pentru a vă îmbunătăți rezultatele la un examen atât de important.

Diverse opțiuni pentru pregătirea pentru examenul de stat unificat

Fiecare decide singur cum să se pregătească pentru examenul de stat unificat. Unii se bazează în întregime pe cunoștințele școlare. Și unii reușesc să arate rezultate excelente datorită exclusiv pregătirii școlare. Dar aici rolul decisiv este jucat nu de o anumită școală, ci de un elev care își lua cursurile în mod responsabil și s-a angajat în auto-dezvoltare. Alţii recurg la ajutorul tutorilor care termene scurte poate antrena un student în rezolvarea problemelor standard de la examenul de stat unificat. Însă alegerea unui tutore ar trebui luată în mod responsabil, deoarece mulți consideră tutoratul ca o sursă de venit și nu le pasă de viitorul mentoratului lor. Unii oameni se înscriu la cursuri de specialitate pentru a se pregăti pentru examenul de stat unificat. Aici, specialiști cu experiență îi învață pe copii să facă față diverselor sarcini și îi pregătesc nu numai pentru examenul de stat unificat, ci și pentru intrarea la facultate. Cel mai bine este ca astfel de cursuri să funcționeze la. Apoi profesorii universitari vor preda copilul. Dar există și metode independente pregătirea pentru examenul de stat unificat - teste online.

Teste online Unified State Exam în fizică

Pe portalul educațional Uchistut.ru puteți susține teste online de teste Unified State Exam la fizică pentru a vă pregăti mai bine pentru un adevărat examen de stat unificat. Instruirea pe Internet vă va permite să înțelegeți ce întrebări există la examenul de stat unificat. De asemenea, vă puteți identifica punctele slabe și punctele forte. Întrucât nu există limită de timp pentru testele practice online, puteți găsi în manuale răspunsul la o problemă a cărei soluție este necunoscută. Practica constantă va ajuta la reducerea nivelului de stres în timpul examenului real. Iar experții spun că mai mult de treizeci la sută dintre eșecurile la examenul de stat unificat se datorează tocmai stresului și confuziei din timpul examenului de stat unificat. Pentru un copil, aceasta este o povară foarte grea, o responsabilitate care pune multă presiune asupra elevului și îl împiedică să se concentreze asupra sarcinilor atribuite. Și examenul de stat unificat în fizică este considerat unul dintre cele mai dificile, așa că trebuie să vă pregătiți pentru el cât mai bine posibil. La urma urmei, de la Rezultatele examenului de stat unificatîn fizică depinde de admiterea la cele mai bune universități tehnice din Moscova. Și acestea sunt foarte prestigioase instituţiile de învăţământ, în care mulți oameni visează să intre.

În 2017, materialele de măsurare a controlului din fizică vor suferi modificări semnificative.


Sarcinile cu alegerea unui răspuns corect au fost excluse din opțiuni și au fost adăugate sarcini cu un răspuns scurt. În acest sens, se propune o nouă structură a părții 1 lucrare de examen, iar partea 2 este lăsată neschimbată.

La efectuarea modificărilor structurii lucrării de examinare s-au păstrat abordările conceptuale generale de evaluare a performanțelor educaționale. În special, punctajul total pentru îndeplinirea tuturor sarcinilor lucrării de examinare a rămas neschimbat, repartizarea punctelor maxime pentru îndeplinirea sarcinilor de diferite niveluri de complexitate și distribuția aproximativă a numărului de sarcini pe secțiuni ale cursului de fizică școlară și metode de activitate au fost conservate. Fiecare versiune a lucrării de examen testează elemente de conținut din toate secțiunile cursului de fizică școlară, iar pentru fiecare secțiune sunt oferite sarcini de diferite niveluri de dificultate. Prioritatea la proiectarea unui CMM este necesitatea de a testa tipurile de activități prevăzute de standard: stăpânirea aparatului conceptual al unui curs de fizică, stăpânirea abilităților metodologice, aplicarea cunoștințelor în explicarea proceselor fizice și rezolvarea problemelor.

Versiunea de examen va consta din două părți și va include 31 de sarcini. Partea 1 va conține 23 de sarcini cu răspuns scurt, inclusiv sarcini cu auto-înregistrare a răspunsului sub forma unui număr, două numere sau un cuvânt, precum și sarcini pentru stabilirea potrivirii și alegere multiplă, în care răspunsurile trebuie scrise ca o succesiune de numere. Partea 2 va conține 8 sarcini combinate vedere generală activități – rezolvarea problemelor. Dintre acestea, 3 sarcini cu un răspuns scurt (24–26) și 5 sarcini (29–31), pentru care trebuie să oferiți un răspuns detaliat.

Lucrarea va include sarcini de trei niveluri de dificultate. Sarcinile de nivel de bază sunt incluse în partea 1 a lucrării (18 sarcini, dintre care 13 sarcini cu răspunsul înregistrat sub forma unui număr, două numere sau un cuvânt și 5 sarcini de potrivire și alegere multiplă). Dintre sarcinile nivelului de bază se disting sarcinile al căror conținut corespunde standardului nivelului de bază. Cantitate minima Puncte de examen unificat de stat în fizică, care confirmă că absolventul a stăpânit programul secundar (complet) educatie generalaîn fizică, se stabilește pe baza cerințelor de însuşire a standardului de nivel de bază.

Utilizarea sarcinilor de nivel crescut și ridicat de complexitate în munca de examinare ne permite să evaluăm gradul de pregătire al studentului pentru a-și continua studiile la universitate. Sarcinile de nivel avansat sunt distribuite între părțile 1 și 2 ale lucrării de examen: 5 sarcini cu răspuns scurt în partea 1, 3 sarcini cu răspuns scurt și 1 sarcină cu răspuns lung în partea 2. Ultimele patru sarcini din partea 2 sunt sarcini de un nivel ridicat de complexitate.

Partea 1 Lucrarea de examinare va cuprinde două blocuri de sarcini: primul testează stăpânirea aparatului conceptual al cursului de fizică școlară, iar al doilea testează stăpânirea deprinderilor metodologice. Primul bloc include 21 de sarcini, care sunt grupate în funcție de apartenența tematică: 7 sarcini de mecanică, 5 sarcini de MCT și termodinamică, 6 sarcini de electrodinamică și 3 de fizică cuantică.

Grupul de sarcini pentru fiecare secțiune începe cu sarcini cu o formulare independentă a răspunsului sub forma unui număr, două numere sau un cuvânt, apoi urmează o sarcină cu variante multiple (două răspunsuri corecte din cinci propuse), iar la final - sarcini privind schimbarea mărimilor fizice în diverse procese și stabilirea unei corespondențe între mărimile fizice și grafice sau formule în care răspunsul este scris ca o mulțime de două numere.

Sarcinile cu alegere multiplă și potrivire au două puncte și se pot baza pe orice elemente de conținut din această secțiune. Este clar că, în aceeași versiune, toate sarcinile aparținând unei secțiuni vor testa diferite elemente de conținut și se vor referi la diferite subiecte ale acestei secțiuni.

Secțiunile tematice despre mecanică și electrodinamică prezintă toate cele trei tipuri de aceste sarcini; în secțiunea de fizică moleculară - 2 sarcini (una dintre ele este pentru alegere multiplă, iar cealaltă este fie pentru modificări ale cantităților fizice în procese, fie pentru corespondență); în secțiunea despre fizica cuantică există doar o sarcină privind modificarea cantităților fizice sau potrivirea. O atenție deosebită ar trebui să acordați atenție sarcinilor 5, 11 și 16 pentru alegere multiplă, care evaluează capacitatea de a explica fenomenele și procesele studiate și de a interpreta rezultatele diverse studii, prezentate sub formă de tabele sau grafice. Mai jos este un exemplu de astfel de sarcină mecanică.

Ar trebui să acordați atenție schimbării formelor liniilor de sarcini individuale. Sarcina 13 pentru a determina direcția mărimilor fizice vectoriale (forța Coulomb, intensitatea câmpului electric, inducția magnetică, forța Amperi, forța Lorentz etc.) este oferită cu un răspuns scurt sub forma unui cuvânt. În același timp opțiuni posibile Răspunsurile sunt indicate în textul sarcinii. Un exemplu de astfel de sarcină este dat mai jos.

În secțiunea despre fizica cuantică, aș dori să vă atrag atenția asupra sarcinii 19, care testează cunoștințele despre structura atomului, nucleul atomic sau reacții nucleare. Această temă și-a schimbat forma de prezentare. Răspunsul, care este două numere, trebuie mai întâi notat în tabelul propus și apoi transferat în formularul de răspuns nr. 1 fără spații sau caractere suplimentare. Mai jos este un exemplu de astfel de formular de sarcină.

La sfârșitul Părții 1, vor fi oferite 2 sarcini de un nivel de bază de complexitate, testând diverse abilități metodologice și referitoare la diferite secțiuni ale fizicii. Sarcina 22, folosind fotografii sau desene ale instrumentelor de măsurare, are ca scop testarea capacității de a înregistra citirile instrumentului la măsurarea mărimilor fizice, ținând cont de eroarea absolută de măsurare. Eroarea absolută de măsurare este specificată în textul sarcinii: fie sub formă de jumătate din valoarea diviziunii, fie sub forma valorii diviziunii (în funcție de precizia dispozitivului). Un exemplu de astfel de sarcină este dat mai jos.

Sarcina 23 testează capacitatea de a alege echipament pentru efectuarea unui experiment conform unei ipoteze date. În acest model, forma de prezentare a sarcinii s-a schimbat, iar acum este o sarcină cu variante multiple (două elemente din cinci propuse), dar se punctează cu 1 punct dacă ambele elemente ale răspunsului sunt indicate corect. Pot fi oferite trei diverse modele sarcini: să aleagă două desene care să reprezinte grafic setările corespunzătoare pentru experimente; pentru a selecta două rânduri dintr-un tabel care descrie caracteristicile configurației experimentale și pentru a selecta numele a două echipamente sau instrumente care sunt necesare pentru a efectua experimentul specificat. Mai jos este un exemplu de o astfel de sarcină.

Partea 2 munca este dedicată rezolvării problemelor. Acesta este în mod tradițional cel mai semnificativ rezultat al stăpânirii unui curs de fizică liceuși cea mai populară activitate în continuarea studiului subiectului la universitate.

În această parte, KIM 2017 va avea 8 sarcini diferite: 3 probleme de calcul cu înregistrarea independentă a unui răspuns numeric de un nivel crescut de complexitate și 5 probleme cu un răspuns detaliat, dintre care una calitativă și patru sunt de calcul.

În același timp, pe de o parte, aceleași elemente de conținut nu foarte semnificative nu sunt utilizate în sarcini diferite într-o versiune, pe de altă parte, aplicarea legilor fundamentale de conservare poate fi găsită în două sau trei sarcini. Dacă luăm în considerare „legarea” subiectelor sarcinilor de poziția lor în opțiune, atunci la poziția 28 va exista întotdeauna o sarcină pe mecanică, la poziția 29 - pe MCT și termodinamică, la poziția 30 - pe electrodinamică și la poziția 31 - în principal despre fizica cuantică (dacă este doar material fizica cuantică nu va fi implicat într-o sarcină calitativă la poziţia 27).

Complexitatea sarcinilor este determinată atât de natura activității, cât și de context. În problemele de calcul cu un nivel crescut de complexitate (24–26), se presupune utilizarea unui algoritm studiat pentru rezolvarea problemei și se propun situații educaționale tipice pe care elevii le-au întâlnit în timpul procesului de învățare și în care sunt utilizate modele fizice specificate explicit. În aceste sarcini, se acordă preferință formulărilor standard, iar selecția lor se va efectua în primul rând cu accent pe o bancă deschisă de sarcini.

Prima dintre sarcini cu un răspuns detaliat este sarcina de calitate, a cărei soluție este o explicație structurată logic bazată pe legi și regularități fizice. Pentru problemele de calcul cu un nivel ridicat de complexitate, este necesară o analiză a tuturor etapelor soluției, astfel încât acestea sunt oferite sub forma sarcinilor 28-31 cu un răspuns detaliat. Aici se folosesc situații modificate în care este necesar să se opereze cu mai mult decât în sarcini tipice, numărul de legi și formule, introduce justificări suplimentare în procesul decizional sau situații complet noi care nu au mai fost întâlnite înainte în literatură educaționalăşi implică activitate serioasă în analiza proceselor fizice şi alegere independentă model fizic pentru a rezolva problema.