Cum să găsiți logaritmul unui logaritm. Ecuație logaritmică: formule și tehnici de bază

După cum știți, atunci când înmulțiți expresii cu puteri, exponenții lor se adună întotdeauna (a b *a c = a b+c). Această lege matematică a fost derivată de Arhimede, iar mai târziu, în secolul al VIII-lea, matematicianul Virasen a creat un tabel cu exponenți întregi. Ei au fost cei care au servit pentru descoperirea ulterioară a logaritmilor. Exemple de utilizare a acestei funcții pot fi găsite aproape peste tot unde trebuie să simplificați înmulțirea greoaie prin simplă adunare. Dacă petreceți 10 minute citind acest articol, vă vom explica ce sunt logaritmii și cum să lucrați cu ei. Într-un limbaj simplu și accesibil.

Definiție în matematică

Un logaritm este o expresie de următoarea formă: log a b=c, adică logaritmul oricărui număr nenegativ (adică orice pozitiv) „b” la baza sa „a” este considerat a fi puterea „c ” la care trebuie ridicată baza „a” pentru a obține în final valoarea „b”. Să analizăm logaritmul folosind exemple, să presupunem că există o expresie log 2 8. Cum să găsim răspunsul? Este foarte simplu, trebuie să găsești o putere astfel încât de la 2 la puterea necesară să obții 8. După ce faci niște calcule în capul tău, obținem numărul 3! Și asta este adevărat, pentru că 2 la puterea lui 3 dă răspunsul ca 8.

Tipuri de logaritmi

Pentru mulți elevi și studenți, acest subiect pare complicat și de neînțeles, dar de fapt logaritmii nu sunt atât de înfricoșători, principalul lucru este să le înțelegeți sensul general și să vă amintiți proprietățile și unele reguli. Sunt trei specii individuale expresii logaritmice:

  1. Logaritmul natural ln a, unde baza este numărul Euler (e = 2,7).
  2. Decimală a, unde baza este 10.
  3. Logaritmul oricărui număr b la baza a>1.

Fiecare dintre ele este hotărât într-un mod standard, care include simplificarea, reducerea și reducerea ulterioară la un logaritm folosind teoreme logaritmice. Pentru a obține valorile corecte ale logaritmilor, ar trebui să vă amintiți proprietățile acestora și succesiunea acțiunilor atunci când le rezolvați.

Reguli și unele restricții

În matematică, există mai multe reguli-constrângeri care sunt acceptate ca axiomă, adică nu sunt supuse discuției și sunt adevărul. De exemplu, este imposibil să împărțiți numerele la zero și, de asemenea, este imposibil să extrageți rădăcina pare a numerelor negative. Logaritmii au, de asemenea, propriile reguli, după care puteți învăța cu ușurință să lucrați chiar și cu expresii logaritmice lungi și încăpătoare:

  • Baza „a” trebuie să fie întotdeauna mai mare decât zero și nu egală cu 1, altfel expresia își va pierde sensul, deoarece „1” și „0” în orice grad sunt întotdeauna egale cu valorile lor;
  • dacă a > 0, atunci a b >0, se dovedește că și „c” trebuie să fie mai mare decât zero.

Cum se rezolvă logaritmii?

De exemplu, sarcina este de a găsi răspunsul la ecuația 10 x = 100. Acest lucru este foarte ușor, trebuie să alegeți o putere prin ridicarea numărului zece la care obținem 100. Acesta, desigur, este 10 2 = 100.

Acum să reprezentăm această expresie în formă logaritmică. Obținem log 10 100 = 2. La rezolvarea logaritmilor, toate acțiunile practic converg pentru a găsi puterea la care este necesar să se introducă baza logaritmului pentru a obține un număr dat.

Pentru a determina cu exactitate valoarea unui grad necunoscut, trebuie să învățați cum să lucrați cu un tabel de grade. Arata cam asa:

După cum puteți vedea, unii exponenți pot fi ghiciți intuitiv dacă aveți o minte tehnică și cunoștințe despre tabla înmulțirii. Cu toate acestea pentru valori mari veți avea nevoie de un tabel de grade. Poate fi folosit chiar și de cei care nu știu nimic despre subiecte matematice complexe. Coloana din stânga conține numere (baza a), rândul de sus de numere este valoarea puterii c la care este ridicat numărul a. La intersecție, celulele conțin valorile numerice care sunt răspunsul (a c =b). Să luăm, de exemplu, prima celulă cu numărul 10 și să o pătratăm, obținem valoarea 100, care este indicată la intersecția celor două celule ale noastre. Totul este atât de simplu și ușor încât până și cel mai adevărat umanist va înțelege!

Ecuații și inegalități

Rezultă că în anumite condiții exponentul este logaritmul. Prin urmare, orice expresii numerice matematice pot fi scrise ca o egalitate logaritmică. De exemplu, 3 4 =81 poate fi scris ca logaritmul de bază 3 al lui 81 egal cu patru (log 3 81 = 4). Pentru puteri negative regulile sunt aceleași: 2 -5 = 1/32 îl scriem ca logaritm, obținem log 2 (1/32) = -5. Una dintre cele mai fascinante secțiuni ale matematicii este subiectul „logaritmilor”. Vom privi mai jos exemple și soluții de ecuații, imediat după studierea proprietăților acestora. Acum să vedem cum arată inegalitățile și cum să le distingem de ecuații.

Se dă următoarea expresie: log 2 (x-1) > 3 - este o inegalitate logaritmică, deoarece valoarea necunoscută „x” se află sub semnul logaritmic. Și, de asemenea, în expresie sunt comparate două mărimi: logaritmul numărului dorit la baza doi este mai mare decât numărul trei.

Cea mai importantă diferență dintre ecuațiile logaritmice și inegalități este că ecuațiile cu logaritmi (exemplu - logaritmul 2 x = √9) implică unul sau mai multe răspunsuri specifice valori numerice, în timp ce la rezolvarea inegalităților sunt definite ca regiune valori acceptabile, și punctele de întrerupere ale acestei funcții. În consecință, răspunsul nu este un simplu set de numere individuale, ca în răspunsul la o ecuație, ci o serie continuă sau un set de numere.

Teoreme de bază despre logaritmi

La rezolvarea sarcinilor primitive de găsire a valorilor logaritmului, este posibil să nu fie cunoscute proprietățile acestuia. Cu toate acestea, atunci când vine vorba de ecuații sau inegalități logaritmice, în primul rând, este necesar să înțelegem clar și să aplici în practică toate proprietățile de bază ale logaritmilor. Ne vom uita la exemple de ecuații mai târziu, să ne uităm mai întâi la fiecare proprietate în detaliu.

  1. Identitatea principală arată astfel: a logaB =B. Se aplică numai atunci când a este mai mare decât 0, nu este egal cu unu și B este mai mare decât zero.
  2. Logaritmul produsului poate fi reprezentat în următoarea formulă: log d (s 1 * s 2) = log d s 1 + log d s 2. În acest caz, condiția obligatorie este: d, s 1 și s 2 > 0; a≠1. Puteți da o dovadă pentru această formulă logaritmică, cu exemple și soluții. Fie log a s 1 = f 1 și log a s 2 = f 2, apoi a f1 = s 1, a f2 = s 2. Obținem că s 1 * s 2 = a f1 *a f2 = a f1+f2 (proprietățile lui grade ), și apoi prin definiție: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, care este ceea ce trebuia demonstrat.
  3. Logaritmul coeficientului arată astfel: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Teorema sub forma unei formule preia următoarea vedere: log a q b n = n/q log a b.

Această formulă se numește „proprietatea gradului de logaritm”. Seamănă cu proprietățile gradelor obișnuite și nu este surprinzător, deoarece toată matematica se bazează pe postulate naturale. Să ne uităm la dovada.

Fie log a b = t, rezultă a t =b. Dacă ridicăm ambele părți la puterea m: a tn = b n ;

dar deoarece a tn = (a q) nt/q = b n, prin urmare log a q b n = (n*t)/t, atunci log a q b n = n/q log a b. Teorema a fost demonstrată.

Exemple de probleme și inegalități

Cele mai comune tipuri de probleme pe logaritmi sunt exemple de ecuații și inegalități. Ele se găsesc în aproape toate cărțile de probleme și sunt, de asemenea, o parte obligatorie a examenelor de matematică. Pentru a intra la universitate sau pentru a trece examenele de admitere la matematică, trebuie să știi cum să rezolvi corect astfel de sarcini.

Din păcate, nu există un plan sau o schemă unică pentru rezolvarea și determinarea valorii necunoscute a logaritmului, cu toate acestea, acesta poate fi aplicat oricărei inegalități matematice sau ecuații logaritmice. anumite reguli. În primul rând, ar trebui să aflați dacă expresia poate fi simplificată sau duce la aspectul general. Puteți simplifica expresiile logaritmice lungi dacă le folosiți corect proprietățile. Să-i cunoaștem repede.

Când rezolvăm ecuații logaritmice, trebuie să stabilim ce tip de logaritm avem: un exemplu de expresie poate conține un logaritm natural sau unul zecimal.

Iată exemple ln100, ln1026. Soluția lor se rezumă la faptul că trebuie să determine puterea la care baza 10 va fi egală cu 100, respectiv 1026. Pentru a rezolva logaritmii naturali, trebuie să aplicați identități logaritmice sau proprietățile acestora. Să ne uităm la exemple de rezolvare a problemelor logaritmice de diferite tipuri.

Cum să utilizați formulele logaritmice: cu exemple și soluții

Deci, să ne uităm la exemple de utilizare a teoremelor de bază despre logaritmi.

  1. Proprietatea logaritmului unui produs poate fi utilizată în sarcini în care este necesară extinderea mare valoare numerele b în factori mai simpli. De exemplu, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Răspunsul este 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - după cum puteți vedea, folosind a patra proprietate a puterii logaritmului, am reușit să rezolvăm o expresie aparent complexă și de nerezolvat. Trebuie doar să factorizați baza și apoi să scoateți valorile exponentului din semnul logaritmului.

Teme de la examenul de stat unificat

Logaritmii se găsesc adesea la examenele de admitere, în special multe probleme logaritmice la examenul de stat unificat (examen de stat pentru toți absolvenții de școală). De obicei, aceste sarcini sunt prezente nu numai în partea A (cea mai ușoară parte a testului a examenului), ci și în partea C (cele mai complexe și mai voluminoase sarcini). Examenul necesită cunoașterea exactă și perfectă a subiectului „Logaritmi naturali”.

Exemplele și soluțiile la probleme sunt preluate din oficial Opțiuni pentru examenul de stat unificat. Să vedem cum se rezolvă astfel de sarcini.

Dat log 2 (2x-1) = 4. Rezolvare:
să rescriem expresia, simplificând-o puțin log 2 (2x-1) = 2 2, prin definiția logaritmului obținem că 2x-1 = 2 4, deci 2x = 17; x = 8,5.

  • Cel mai bine este să reduceți toți logaritmii la aceeași bază, astfel încât soluția să nu fie greoaie și confuză.
  • Toate expresiile de sub semnul logaritmului sunt indicate ca pozitive, prin urmare, atunci când exponentul unei expresii care se află sub semnul logaritmului și ca bază a acesteia este scos ca multiplicator, expresia rămasă sub logaritm trebuie să fie pozitivă.

Proprietățile de bază ale logaritmului natural, grafic, domeniu de definiție, set de valori, formule de bază, derivată, integrală, expansiune în serie de putereşi reprezentarea funcţiei ln x folosind numere complexe.

Definiţie

Logaritmul natural este funcția y = ln x, inversul exponențialului, x = e y, și este logaritmul la baza numărului e: ln x = log e x.

Logaritmul natural este utilizat pe scară largă în matematică, deoarece derivata sa are cea mai simplă formă: (ln x)′ = 1/ x.

Bazat pe definiții, baza logaritmului natural este numărul e:
e ≅ 2,718281828459045...;
.

Graficul funcției y = ln x.

Graficul logaritmului natural (funcțiile y = ln x) se obține din graficul exponențial imagine în oglindă relativ la dreapta y = x.

Logaritmul natural este definit pentru valorile pozitive ale variabilei x.

Ea crește monoton în domeniul său de definire. 0 La x →

limita logaritmului natural este minus infinitul (-∞). Ca x → + ∞, limita logaritmului natural este plus infinitul (+ ∞). Pentru x mare, logaritmul crește destul de lent. Orice functie de putere

x a cu exponent pozitiv a crește mai repede decât logaritmul.

Proprietățile logaritmului natural

Domeniu de definire, set de valori, extrema, crestere, scadere

ln x valori

ln 1 = 0

Formule de bază pentru logaritmi naturali

Formule care urmează din definiția funcției inverse:

Principala proprietate a logaritmilor și consecințele acesteia

Formula de înlocuire a bazei

Orice logaritm poate fi exprimat în termeni de logaritmi naturali folosind formula de substituție a bazei:

Dovezile acestor formule sunt prezentate în secțiunea „Logaritm”.

Funcția inversă

Inversa logaritmului natural este exponentul.

Dacă, atunci

Dacă, atunci.

Derivată ln x

Derivată a logaritmului natural:
.
Derivată a logaritmului natural al modulului x:
.
Derivată de ordin al n-lea:
.
Formule derivate > > >

Integral

Integrala se calculează prin integrare pe părți:
.
Aşa,

Expresii folosind numere complexe

Luați în considerare funcția variabilei complexe z:
.
Să exprimăm variabila complexă z prin modul rși argument φ :
.
Folosind proprietățile logaritmului, avem:
.
Sau
.
Argumentul φ nu este definit în mod unic. Daca pui
, unde n este un număr întreg,
va fi același număr pentru n diferit.

Prin urmare, logaritmul natural, în funcție de o variabilă complexă, nu este o funcție cu o singură valoare.

Extinderea seriei de putere

Când are loc extinderea:

Literatura folosita:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți, „Lan”, 2009.

Instrucţiuni

Scrieți expresia logaritmică dată. Dacă expresia folosește logaritmul lui 10, atunci notația sa este scurtată și arată astfel: lg b este logaritmul zecimal. Dacă logaritmul are ca bază numărul e, atunci scrieți expresia: ln b – logaritm natural. Se înțelege că rezultatul oricărei este puterea la care trebuie ridicat numărul de bază pentru a obține numărul b.

Când găsiți suma a două funcții, trebuie pur și simplu să le diferențiați una câte una și să adăugați rezultatele: (u+v)" = u"+v";

Atunci când găsiți derivata produsului a două funcții, este necesar să înmulțiți derivata primei funcții cu a doua și să adăugați derivata celei de-a doua funcții înmulțită cu prima funcție: (u*v)" = u"*v +v"*u;

Pentru a afla derivata coeficientului a doua functii, este necesar sa scadem din produsul derivatei dividendului inmultit cu functia divizor produsul derivatei divizorului inmultit cu functia dividendului si impartiti toate acestea prin funcția divizor la pătrat. (u/v)" = (u"*v-v"*u)/v^2;

Dacă este dat functie complexa, atunci este necesar să se înmulțească derivata funcției interne și derivata celei externe. Fie y=u(v(x)), apoi y"(x)=y"(u)*v"(x).

Folosind rezultatele obținute mai sus, puteți diferenția aproape orice funcție. Deci, să ne uităm la câteva exemple:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
Există, de asemenea, probleme care implică calcularea derivatei la un punct. Fie dată funcția y=e^(x^2+6x+5), trebuie să găsiți valoarea funcției în punctul x=1.
1) Aflați derivata funcției: y"=e^(x^2-6x+5)*(2*x +6).

2) Calculați valoarea funcției în punct dat y"(1)=8*e^0=8

Video pe tema

Sfaturi utile

Învață tabelul derivatelor elementare. Acest lucru va economisi timp semnificativ.

Surse:

  • derivată a unei constante

Deci, care este diferența dintre o ecuație irațională și una rațională? Dacă variabila necunoscută se află sub semnul rădăcinii pătrate, atunci ecuația este considerată irațională.

Instrucţiuni

Principala metodă de rezolvare a unor astfel de ecuații este metoda de construire a ambelor părți ecuațiiîntr-un pătrat. Cu toate acestea. acest lucru este firesc, primul lucru pe care trebuie să-l faci este să scapi de semn. Această metodă nu este dificilă din punct de vedere tehnic, dar uneori poate duce la probleme. De exemplu, ecuația este v(2x-5)=v(4x-7). Prin pătrarea ambelor părți se obține 2x-5=4x-7. Rezolvarea unei astfel de ecuații nu este dificilă; x=1. Dar numărul 1 nu va fi dat ecuații. De ce? Înlocuiți unul în ecuație în loc de valoarea lui x Și părțile din dreapta și din stânga vor conține expresii care nu au sens. Această valoare nu este valabilă pentru o rădăcină pătrată. Prin urmare, 1 este o rădăcină străină și, prin urmare, această ecuație nu are rădăcini.

Deci, o ecuație irațională se rezolvă folosind metoda punerii la pătrat a ambelor laturi. Și după ce am rezolvat ecuația, este necesar să tăiați rădăcinile străine. Pentru a face acest lucru, înlocuiți rădăcinile găsite în ecuația originală.

Luați în considerare altul.
2х+vх-3=0
Desigur, această ecuație poate fi rezolvată folosind aceeași ecuație ca cea anterioară. Mutați compuși ecuații, care nu au rădăcină pătrată, în partea dreaptă și apoi folosiți metoda pătratului. rezolvați ecuația rațională și rădăcinile rezultate. Dar și altul, mai elegant. Introduceți o nouă variabilă; vх=y. În consecință, veți primi o ecuație de forma 2y2+y-3=0. Adică de obicei ecuație pătratică. Găsește-i rădăcinile; y1=1 și y2=-3/2. Apoi, rezolvă două ecuații vх=1; vх=-3/2. A doua ecuație nu are rădăcini din prima găsim că x=1. Nu uitați să verificați rădăcinile.

Rezolvarea identităților este destul de simplă. Pentru a face acest lucru, este necesar să efectuați transformări identice până la atingerea scopului stabilit. Astfel, cu ajutorul celor mai simple operatii aritmetice sarcina la îndemână va fi rezolvată.

vei avea nevoie

  • - hartie;
  • - stilou.

Instrucţiuni

Cele mai simple dintre astfel de transformări sunt înmulțirile algebrice abreviate (cum ar fi pătratul sumei (diferența), diferența de pătrate, suma (diferența), cubul sumei (diferența)). În plus, sunt multe și formule trigonometrice, care sunt în esență aceleași identități.

Într-adevăr, pătratul sumei a doi termeni este egal cu pătratul primului plus de două ori produsul primului cu al doilea și plus pătratul celui de-al doilea, adică (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Simplificați pe ambele

Principii generale ale soluției

Repetați conform manualului analiză matematică sau matematică superioară, care este o integrală definită. După cum se știe, soluția integrală definită există o funcţie a cărei derivată dă un integrand. Această funcție se numește antiderivat. Pe baza acestui principiu se construiesc integralele principale.
Determinați după tipul de integrand care dintre integralele tabelului este potrivită în acest caz. Nu este întotdeauna posibil să determinați acest lucru imediat. Adesea, forma tabulară devine vizibilă numai după mai multe transformări pentru a simplifica integrandul.

Metoda de înlocuire a variabilei

Dacă integrandul este o funcție trigonometrică al cărei argument este un polinom, atunci încercați să utilizați metoda schimbării variabilelor. Pentru a face acest lucru, înlocuiți polinomul din argumentul integrandului cu o nouă variabilă. Pe baza relației dintre variabilele noi și vechi, determinați noile limite de integrare. Prin diferențierea acestei expresii, găsiți noua diferență în . Deci vei primi aspect nou a integralei anterioare, apropiată sau chiar corespunzătoare oricărui tabel.

Rezolvarea integralelor de al doilea fel

Dacă integrala este o integrală de al doilea fel, o formă vectorială a integrandului, atunci va trebui să utilizați regulile pentru trecerea de la aceste integrale la cele scalare. O astfel de regulă este relația Ostrogradsky-Gauss. Această lege ne permite să trecem de la fluxul rotor al unei anumite funcții vectoriale la integrala triplă peste divergența unui câmp vectorial dat.

Înlocuirea limitelor de integrare

După găsirea antiderivatei, este necesar să se substituie limitele integrării. În primul rând, înlocuiți valoarea limitei superioare în expresia pentru antiderivată. Vei primi un număr. Apoi, scădeți din numărul rezultat un alt număr obținut limita inferioarăîntr-un antiderivat. Dacă una dintre limitele integrării este infinitul, atunci când o înlocuiți în funcția antiderivată, este necesar să mergeți la limită și să găsiți spre ce tinde expresia.
Dacă integrala este bidimensională sau tridimensională, atunci va trebui să reprezentați geometric limitele integrării pentru a înțelege cum să evaluați integrala. Într-adevăr, în cazul, de exemplu, a unei integrale tridimensionale, limitele integrării pot fi planuri întregi care limitează volumul care este integrat.

(din greacă λόγος - „cuvânt”, „relație” și ἀριθμός - „număr”) numere b bazat pe o(log α b) se numește un astfel de număr c, Și b= a c, adică înregistrează log α b=cŞi b=ac sunt echivalente. Logaritmul are sens dacă a > 0, a ≠ 1, b > 0.

Cu alte cuvinte logaritm numere b bazat pe O formulat ca un exponent la care trebuie ridicat un număr o pentru a obține numărul b(logaritmul există doar pentru numerele pozitive).

Din această formulare rezultă că calculul x= log α b, este echivalent cu rezolvarea ecuației a x =b.

De exemplu:

log 2 8 = 3 deoarece 8 = 2 3 .

Să subliniem că formularea indicată a logaritmului face posibilă determinarea imediată valoarea logaritmului, când numărul de sub semnul logaritmului acționează ca o anumită putere a bazei. Într-adevăr, formularea logaritmului face posibilă justificarea că dacă b=a c, apoi logaritmul numărului b bazat pe o egală Cu. De asemenea, este clar că tema logaritmilor este strâns legată de subiect puterile unui număr.

Calcularea logaritmului se numește logaritm. Logaritmul este operația matematică de luare a unui logaritm. Atunci când se iau logaritmi, produsele factorilor sunt transformate în sume de termeni.

Potentarea este operația matematică inversă a logaritmului. În timpul potențarii, o bază dată este ridicată la gradul de expresie peste care se realizează potențarea. În acest caz, sumele de termeni sunt transformate într-un produs de factori.

Destul de des, logaritmii reali sunt folosiți cu bazele 2 (binare), numărul lui Euler e ≈ 2,718 (logaritmul natural) și 10 (zecimal).

În această etapă este indicat să luați în considerare probe de logaritm jurnal 7 2 , ln 5, lg0.0001.

Și intrările lg(-3), log -3 3.2, log -1 -4.3 nu au sens, deoarece în primul dintre ele un număr negativ este plasat sub semnul logaritmului, în al doilea - număr negativîn bază, iar în a treia - atât un număr negativ sub semnul logaritmului, cât și o unitate în bază.

Condiții pentru determinarea logaritmului.

Merită să luăm în considerare separat condițiile a > 0, a ≠ 1, b > 0. în care obținem definiția logaritmului. Să ne gândim de ce au fost luate aceste restricții. O egalitate de forma x = log α ne va ajuta în acest sens b, numită identitate logaritmică de bază, care decurge direct din definiția logaritmului dată mai sus.

Să luăm condiția a≠1. Deoarece unu la orice putere este egal cu unu, atunci egalitatea x=log α b poate exista doar atunci când b=1, dar log 1 1 va fi orice număr real. Pentru a elimina această ambiguitate, luăm a≠1.

Să demonstrăm necesitatea condiției a>0. La a=0 conform formulării logaritmului poate exista numai atunci când b=0. Și în consecință atunci log 0 0 poate fi orice număr real diferit de zero, deoarece de la zero la orice putere diferită de zero este zero. Această ambiguitate poate fi eliminată prin condiție a≠0. Și când o<0 ar trebui să respingem analiza valorilor raționale și iraționale ale logaritmului, deoarece un grad cu un exponent rațional și irațional este definit doar pentru baze nenegative. Din acest motiv este stipulată condiția a>0.

Și ultima condiție b>0 rezultă din inegalitate a>0, deoarece x=log α b, și valoarea gradului cu bază pozitivă oîntotdeauna pozitiv.

Caracteristicile logaritmilor.

Logaritmi caracterizat prin distinctiv Caracteristici, ceea ce a dus la utilizarea lor pe scară largă pentru a facilita în mod semnificativ calculele minuțioase. Când treceți „în lumea logaritmilor”, înmulțirea este transformată într-o adunare mult mai ușoară, împărțirea este transformată în scădere, iar exponențiația și extragerea rădăcinii sunt transformate, respectiv, în înmulțire și împărțire cu exponent.

Formularea logaritmilor și tabelul valorilor acestora (pentru funcții trigonometrice) a fost publicat pentru prima dată în 1614 de către matematicianul scoțian John Napier. Tabelele logaritmice, mărite și detaliate de alți oameni de știință, au fost utilizate pe scară largă în calculele științifice și de inginerie și au rămas relevante până la utilizarea calculatoarelor electronice și a calculatoarelor.

Sunt date proprietățile de bază ale logaritmului, graficul logaritmului, domeniul de definire, setul de valori, formulele de bază, crescător și descrescător. Se ia în considerare găsirea derivatei unui logaritm. La fel ca integrală, extinderea seriei de putere și reprezentarea folosind numere complexe.

Definiţia logarithm

Logaritm cu baza a este o funcție a lui y (x) = log a x, inversă funcției exponențiale cu baza a: x (y) = a y.

Logaritm zecimal este logaritmul la baza unui număr 10 : log x ≡ log 10 x.

Logaritmul natural este logaritmul la baza lui e: ln x ≡ log e x.

2,718281828459045... ;
.

Graficul logaritmului se obține din graficul funcției exponențiale prin oglindirea acesteia față de dreapta y = x. În stânga sunt grafice ale funcției y(x) = log a x pentru patru valori baze logaritmice 2 : a = 8 : a = 1/2 , a = 1/8 și a = 1 . 0 < a < 1 Graficul arată că atunci când un >

logaritmul crește monoton. Pe măsură ce x crește, creșterea încetinește semnificativ. La

logaritmul scade monoton.

Proprietățile logaritmului

Domeniu, set de valori, crescător, descrescător 0 < x < + ∞ 0 < x < + ∞
Logaritmul este o funcție monotonă, deci nu are extreme. Principalele proprietăți ale logaritmului sunt prezentate în tabel. - ∞ < y < + ∞ - ∞ < y < + ∞
Domeniul definiției Gama de valori Monoton
crește monoton 0 scade monoton 1 scade monoton 1
Zerouri, y = 0 x = x =
+ ∞ - ∞
- ∞ + ∞

Interceptarea punctelor cu axa ordonatelor, x =


Nu Valori private Se numește logaritmul la baza 10

logaritm zecimal și se notează după cum urmează: Logaritm la bază e:

numit

logaritmul natural

Principala proprietate a logaritmilor și consecințele acesteia

Formula de înlocuire a bazei

Formule de bază pentru logaritmi Proprietățile logaritmului care decurg din definiția funcției inverse:

Potentarea Logaritm

este operația matematică de luare a unui logaritm. Când se iau logaritmi, produsele factorilor sunt convertite în sume de termeni.

este operația matematică inversă a logaritmului. În timpul potențarii, o bază dată este ridicată la gradul de expresie peste care se realizează potențarea. În acest caz, sumele de termeni sunt transformate în produse de factori.

Dovada formulelor de bază pentru logaritmi
.
Formulele legate de logaritmi decurg din formulele pentru funcții exponențiale și din definiția unei funcții inverse.
.
Luați în considerare proprietatea funcției exponențiale
:
.

Apoi
;
.
Să aplicăm proprietatea funcției exponențiale

Funcția inversă

Să demonstrăm formula de înlocuire de bază. Presupunând c = b, avem: Inversa logaritmului la baza a este

Dacă, atunci

Dacă, atunci

functie exponentiala

cu exponentul a.
.
Derivată de ordin al n-lea:
.
Formule derivate > > >

Derivată a logaritmului și se notează după cum urmează:.
;
.

Integral

Derivată a logaritmului modulului x:
Aşa,

Expresii folosind numere complexe

Pentru a găsi derivata unui logaritm, aceasta trebuie redusă la bază z:
.
Integrala logaritmului se calculează prin integrarea pe părți: . z prin modul rși argument φ :
.
Luați în considerare funcția număr complex
.
Sau

Să exprimăm un număr complex φ Apoi, folosind proprietățile logaritmului, avem:
Cu toate acestea, argumentul
nu este definit în mod unic. Daca pui , unde n este un număr întreg,.

atunci va fi același număr pentru diferit

Extinderea seriei de putere

Când are loc extinderea:

Literatura folosita:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți, „Lan”, 2009.