Разработка возможных вариантов конфигурации лвс. Курсовая работа: Проектирование районной электрической сети Пример расчета одного из вариантов схем

Всем привет. На днях возникла идея написать статьи про основы компьютерных сетей, разобрать работу самых важных протоколов и как строятся сети простым языком. Заинтересовавшихся приглашаю под кат.


Немного оффтопа: Приблизительно месяц назад сдал экзамен CCNA (на 980/1000 баллов) и осталось много материала за год моей подготовки и обучения. Учился я сначала в академии Cisco около 7 месяцев, а оставшееся время вел конспекты по всем темам, которые были мною изучены. Также консультировал многих ребят в области сетевых технологий и заметил, что многие наступают на одни и те же грабли, в виде пробелов по каким-то ключевым темам. На днях пару ребят попросили меня объяснить, что такое сети и как с ними работать. В связи с этим решил максимально подробно и простым языком описать самые ключевые и важные вещи. Статьи будут полезны новичкам, которые только встали на путь изучения. Но, возможно, и бывалые сисадмины подчеркнут из этого что-то полезное. Так как я буду идти по программе CCNA, это будет очень полезно тем людям, которые готовятся к сдаче. Можете держать статьи в виде шпаргалок и периодически их просматривать. Я во время обучения делал конспекты по книгам и периодически читал их, чтобы освежать знания.

Вообще хочу дать всем начинающим совет. Моей первой серьезной книгой, была книга Олиферов «Компьютерные сети». И мне было очень тяжело читать ее. Не скажу, что все было тяжело. Но моменты, где детально разбиралось, как работает MPLS или Ethernet операторского класса, вводило в ступор. Я читал одну главу по несколько часов и все равно многое оставалось загадкой. Если вы понимаете, что какие то термины никак не хотят лезть в голову, пропустите их и читайте дальше, но ни в коем случае не отбрасывайте книгу полностью. Это не роман или эпос, где важно читать по главам, чтобы понять сюжет. Пройдет время и то, что раньше было непонятным, в итоге станет ясно. Здесь прокачивается «книжный скилл». Каждая следующая книга, читается легче предыдущей книги. К примеру, после прочтения Олиферов «Компьютерные сети», читать Таненбаума «Компьютерные сети» легче в несколько раз и наоборот. Потому что новых понятий встречается меньше. Поэтому мой совет: не бойтесь читать книги. Ваши усилия в будущем принесут плоды. Заканчиваю разглагольствование и приступаю к написанию статьи.

Итак, начнем с основных сетевых терминов.

Что такое сеть? Это совокупность устройств и систем, которые подключены друг к другу (логически или физически) и общающихся между собой. Сюда можно отнести сервера, компьютеры, телефоны, маршрутизаторы и так далее. Размер этой сети может достигать размера Интернета, а может состоять всего из двух устройств, соединенных между собой кабелем. Чтобы не было каши, разделим компоненты сети на группы:

1) Оконечные узлы: Устройства, которые передают и/или принимают какие-либо данные. Это могут быть компьютеры, телефоны, сервера, какие-то терминалы или тонкие клиенты, телевизоры.

2) Промежуточные устройства: Это устройства, которые соединяют оконечные узлы между собой. Сюда можно отнести коммутаторы, концентраторы, модемы, маршрутизаторы, точки доступа Wi-Fi.

3) Сетевые среды: Это те среды, в которых происходит непосредственная передача данных. Сюда относятся кабели, сетевые карточки, различного рода коннекторы, воздушная среда передачи. Если это медный кабель, то передача данных осуществляется при помощи электрических сигналов. У оптоволоконных кабелей, при помощи световых импульсов. Ну и у беспроводных устройств, при помощи радиоволн.

Посмотрим все это на картинке:

На данный момент надо просто понимать отличие. Детальные отличия будут разобраны позже.

Теперь, на мой взгляд, главный вопрос: Для чего мы используем сети? Ответов на этот вопрос много, но я освещу самые популярные, которые используются в повседневной жизни:

1) Приложения: При помощи приложений отправляем разные данные между устройствами, открываем доступ к общим ресурсам. Это могут быть как консольные приложения, так и приложения с графическим интерфейсом.

2) Сетевые ресурсы: Это сетевые принтеры, которыми, к примеру, пользуются в офисе или сетевые камеры, которые просматривает охрана, находясь в удаленной местности.

3) Хранилище: Используя сервер или рабочую станцию, подключенную к сети, создается хранилище доступное для других. Многие люди выкладывают туда свои файлы, видео, картинки и открывают общий доступ к ним для других пользователей. Пример, который на ходу приходит в голову, - это google диск, яндекс диск и тому подобные сервисы.

4) Резервное копирование: Часто, в крупных компаниях, используют центральный сервер, куда все компьютеры копируют важные файлы для резервной копии. Это нужно для последующего восстановления данных, если оригинал удалился или повредился. Методов копирования огромное количество: с предварительным сжатием, кодированием и так далее.

5) VoIP: Телефония, работающая по протоколу IP. Применяется она сейчас повсеместно, так как проще, дешевле традиционной телефонии и с каждым годом вытесняет ее.

Из всего списка, чаще всего многие работали именно с приложениями. Поэтому разберем их более подробно. Я старательно буду выбирать только те приложения, которые как-то связаны с сетью. Поэтому приложения типа калькулятора или блокнота, во внимание не беру.

1) Загрузчики. Это файловые менеджеры, работающие по протоколу FTP, TFTP. Банальный пример - это скачивание фильма, музыки, картинок с файлообменников или иных источников. К этой категории еще можно отнести резервное копирование, которое автоматически делает сервер каждую ночь. То есть это встроенные или сторонние программы и утилиты, которые выполняют копирование и скачивание. Данный вид приложений не требует прямого человеческого вмешательства. Достаточно указать место, куда сохранить и скачивание само начнется и закончится.

Скорость скачивания зависит от пропускной способности. Для данного типа приложений это не совсем критично. Если, например, файл будет скачиваться не минуту, а 10, то тут только вопрос времени, и на целостности файла это никак не скажется. Сложности могут возникнуть только когда нам надо за пару часов сделать резервную копию системы, а из-за плохого канала и, соответственно, низкой пропускной способности, это занимает несколько дней. Ниже приведены описания самых популярных протоколов данной группы:

FTP- это стандартный протокол передачи данных с установлением соединения. Работает по протоколу TCP (этот протокол в дальнейшем будет подробно рассмотрен). Стандартный номер порта 21. Чаще всего используется для загрузки сайта на веб-хостинг и выгрузки его. Самым популярным приложением, работающим по этому протоколу - это Filezilla. Вот так выглядит само приложение:


TFTP- это упрощенная версия протокола FTP, которая работает без установления соединения, по протоколу UDP. Применяется для загрузки образа бездисковыми рабочими станциями. Особенно широко используется устройствами Cisco для той же загрузки образа и резервных копий.

Интерактивные приложения. Приложения, позволяющие осуществить интерактивный обмен. Например, модель «человек-человек». Когда два человека, при помощи интерактивных приложений, общаются между собой или ведут общую работу. Сюда относится: ICQ, электронная почта, форум, на котором несколько экспертов помогают людям в решении вопросов. Или модель «человек-машина». Когда человек общается непосредственно с компьютером. Это может быть удаленная настройка базы, конфигурация сетевого устройства. Здесь, в отличие от загрузчиков, важно постоянное вмешательство человека. То есть, как минимум, один человек выступает инициатором. Пропускная способность уже более чувствительна к задержкам, чем приложения-загрузчики. Например, при удаленной конфигурации сетевого устройства, будет тяжело его настраивать, если отклик от команды будет в 30 секунд.

Приложения в реальном времени. Приложения, позволяющие передавать информацию в реальном времени. Как раз к этой группе относится IP-телефония, системы потокового вещания, видеоконференции. Самые чувствительные к задержкам и пропускной способности приложения. Представьте, что вы разговариваете по телефону и то, что вы говорите, собеседник услышит через 2 секунды и наоборот, вы от собеседника с таким же интервалом. Такое общение еще и приведет к тому, что голоса будут пропадать и разговор будет трудноразличимым, а в видеоконференция превратится в кашу. В среднем, задержка не должна превышать 300 мс. К данной категории можно отнести Skype, Lync, Viber (когда совершаем звонок).

Теперь поговорим о такой важной вещи, как топология. Она делится на 2 большие категории: физическая и логическая . Очень важно понимать их разницу. Итак, физическая топология - это как наша сеть выглядит. Где находятся узлы, какие сетевые промежуточные устройства используются и где они стоят, какие сетевые кабели используются, как они протянуты и в какой порт воткнуты. Логическая топология - это каким путем будут идти пакеты в нашей физической топологии. То есть физическая - это как мы расположили устройства, а логическая - это через какие устройства будут проходить пакеты.

Теперь посмотрим и разберем виды топологии:

1) Топология с общей шиной (англ. Bus Topology)


Одна из первых физических топологий. Суть состояла в том, что к одному длинному кабелю подсоединяли все устройства и организовывали локальную сеть. На концах кабеля требовались терминаторы. Как правило - это было сопротивление на 50 Ом, которое использовалось для того, чтобы сигнал не отражался в кабеле. Преимущество ее было только в простоте установки. С точки зрения работоспособности была крайне не устойчивой. Если где-то в кабеле происходил разрыв, то вся сеть оставалась парализованной, до замены кабеля.

2) Кольцевая топология (англ. Ring Topology)


В данной топологии каждое устройство подключается к 2-ум соседним. Создавая, таким образом, кольцо. Здесь логика такова, что с одного конца компьютер только принимает, а с другого только отправляет. То есть, получается передача по кольцу и следующий компьютер играет роль ретранслятора сигнала. За счет этого нужда в терминаторах отпала. Соответственно, если где-то кабель повреждался, кольцо размыкалось и сеть становилась не работоспособной. Для повышения отказоустойчивости, применяют двойное кольцо, то есть в каждое устройство приходит два кабеля, а не один. Соответственно, при отказе одного кабеля, остается работать резервный.

3) Топология звезда (англ. Star Topology)


Все устройства подключаются к центральному узлу, который уже является ретранслятором. В наше время данная модель используется в локальных сетях, когда к одному коммутатору подключаются несколько устройств, и он является посредником в передаче. Здесь отказоустойчивость значительно выше, чем в предыдущих двух. При обрыве, какого либо кабеля, выпадает из сети только одно устройство. Все остальные продолжают спокойно работать. Однако если откажет центральное звено, сеть станет неработоспособной.

4)Полносвязная топология (англ. Full-Mesh Topology)


Все устройства связаны напрямую друг с другом. То есть с каждого на каждый. Данная модель является, пожалуй, самой отказоустойчивой, так как не зависит от других. Но строить сети на такой модели сложно и дорого. Так как в сети, в которой минимум 1000 компьютеров, придется подключать 1000 кабелей на каждый компьютер.

5)Неполносвязная топология (англ. Partial-Mesh Topology)


Как правило, вариантов ее несколько. Она похожа по строению на полносвязную топологию. Однако соединение построено не с каждого на каждый, а через дополнительные узлы. То есть узел A, связан напрямую только с узлом B, а узел B связан и с узлом A, и с узлом C. Так вот, чтобы узлу A отправить сообщение узлу C, ему надо отправить сначала узлу B, а узел B в свою очередь отправит это сообщение узлу C. В принципе по этой топологии работают маршрутизаторы. Приведу пример из домашней сети. Когда вы из дома выходите в Интернет, у вас нет прямого кабеля до всех узлов, и вы отправляете данные своему провайдеру, а он уже знает куда эти данные нужно отправить.

6) Смешанная топология (англ. Hybrid Topology)


Самая популярная топология, которая объединила все топологии выше в себя. Представляет собой древовидную структуру, которая объединяет все топологии. Одна из самых отказоустойчивых топологий, так как если у двух площадок произойдет обрыв, то парализована будет связь только между ними, а все остальные объединенные площадки будут работать безотказно. На сегодняшний день, данная топология используется во всех средних и крупных компаниях.

И последнее, что осталось разобрать - это сетевые модели. На этапе зарождения компьютеров, у сетей не было единых стандартов. Каждый вендор использовал свои проприетарные решения, которые не работали с технологиями других вендоров. Конечно, оставлять так было нельзя и нужно было придумывать общее решение. Эту задачу взвалила на себя международная организация по стандартизации (ISO - International Organization for Standartization). Они изучали многие, применяемые на то время, модели и в результате придумали модель OSI , релиз которой состоялся в 1984 году. Проблема ее была только в том, что ее разрабатывали около 7 лет. Пока специалисты спорили, как ее лучше сделать, другие модели модернизировались и набирали обороты. В настоящее время модель OSI не используют. Она применяется только в качестве обучения сетям. Мое личное мнение, что модель OSI должен знать каждый уважающий себя админ как таблицу умножения. Хоть ее и не применяют в том виде, в каком она есть, принципы работы у всех моделей схожи с ней.

Состоит она из 7 уровней и каждый уровень выполняет определенную ему роль и задачи. Разберем, что делает каждый уровень снизу вверх:

1) Физический уровень (Physical Layer): определяет метод передачи данных, какая среда используется (передача электрических сигналов, световых импульсов или радиоэфир), уровень напряжения, метод кодирования двоичных сигналов.

2) Канальный уровень (Data Link Layer): он берет на себя задачу адресации в пределах локальной сети, обнаруживает ошибки, проверяет целостность данных. Если слышали про MAC-адреса и протокол «Ethernet», то они располагаются на этом уровне.

3) Сетевой уровень (Network Layer): этот уровень берет на себя объединения участков сети и выбор оптимального пути (т.е. маршрутизация). Каждое сетевое устройство должно иметь уникальный сетевой адрес в сети. Думаю, многие слышали про протоколы IPv4 и IPv6. Эти протоколы работают на данном уровне.

4) Транспортный уровень (Transport Layer): Этот уровень берет на себя функцию транспорта. К примеру, когда вы скачиваете файл с Интернета, файл в виде сегментов отправляется на Ваш компьютер. Также здесь вводятся понятия портов, которые нужны для указания назначения к конкретной службе. На этом уровне работают протоколы TCP (с установлением соединения) и UDP (без установления соединения).

5) Сеансовый уровень (Session Layer): Роль этого уровня в установлении, управлении и разрыве соединения между двумя хостами. К примеру, когда открываете страницу на веб-сервере, то Вы не единственный посетитель на нем. И вот для того, чтобы поддерживать сеансы со всеми пользователями, нужен сеансовый уровень.

6) Уровень представления (Presentation Layer): Он структурирует информацию в читабельный вид для прикладного уровня. Например, многие компьютеры используют таблицу кодировки ASCII для вывода текстовой информации или формат jpeg для вывода графического изображения.

7) Прикладной уровень (Application Layer): Наверное, это самый понятный для всех уровень. Как раз на этом уроне работают привычные для нас приложения - e-mail, браузеры по протоколу HTTP, FTP и остальное.

Самое главное помнить, что нельзя перескакивать с уровня на уровень (Например, с прикладного на канальный, или с физического на транспортный). Весь путь должен проходить строго с верхнего на нижний и с нижнего на верхний. Такие процессы получили название инкапсуляция (с верхнего на нижний) и деинкапсуляция (с нижнего на верхний). Также стоит упомянуть, что на каждом уровне передаваемая информация называется по-разному.

На прикладном, представления и сеансовым уровнях, передаваемая информация обозначается как PDU (Protocol Data Units). На русском еще называют блоки данных, хотя в моем круге их называют просто данные).

Информацию транспортного уровня называют сегментами. Хотя понятие сегменты, применимо только для протокола TCP. Для протокола UDP используется понятие - датаграмма. Но, как правило, на это различие закрывают глаза.
На сетевом уровне называют IP пакеты или просто пакеты.

И на канальном уровне - кадры. С одной стороны это все терминология и она не играет важной роли в том, как вы будете называть передаваемые данные, но для экзамена эти понятия лучше знать. Итак, приведу свой любимый пример, который помог мне, в мое время, разобраться с процессом инкапсуляции и деинкапусуляции:

1) Представим ситуацию, что вы сидите у себя дома за компьютером, а в соседней комнате у вас свой локальный веб-сервер. И вот вам понадобилось скачать файл с него. Вы набираете адрес страницы вашего сайта. Сейчас вы используете протокол HTTP, которые работает на прикладном уровне. Данные упаковываются и спускаются на уровень ниже.

2) Полученные данные прибегают на уровень представления. Здесь эти данные структурируются и приводятся в формат, который сможет быть прочитан на сервере. Запаковывается и спускается ниже.

3) На этом уровне создается сессия между компьютером и сервером.

4) Так как это веб сервер и требуется надежное установление соединения и контроль за принятыми данными, используется протокол TCP. Здесь мы указываем порт, на который будем стучаться и порт источника, чтобы сервер знал, куда отправлять ответ. Это нужно для того, чтобы сервер понял, что мы хотим попасть на веб-сервер (стандартно - это 80 порт), а не на почтовый сервер. Упаковываем и спускаем дальше.

5) Здесь мы должны указать, на какой адрес отправлять пакет. Соответственно, указываем адрес назначения (пусть адрес сервера будет 192.168.1.2) и адрес источника (адрес компьютера 192.168.1.1). Заворачиваем и спускаем дальше.

6) IP пакет спускается вниз и тут вступает в работу канальный уровень. Он добавляет физические адреса источника и назначения, о которых подробно будет расписано в последующей статье. Так как у нас компьютер и сервер в локальной среде, то адресом источника будет являться MAC-адрес компьютера, а адресом назначения MAC-адрес сервера (если бы компьютер и сервер находились в разных сетях, то адресация работала по-другому). Если на верхних уровнях каждый раз добавлялся заголовок, то здесь еще добавляется концевик, который указывает на конец кадра и готовность всех собранных данных к отправке.

7) И уже физический уровень конвертирует полученное в биты и при помощи электрических сигналов (если это витая пара), отправляет на сервер.

Процесс деинкапсуляции аналогичен, но с обратной последовательностью:

1) На физическом уровне принимаются электрические сигналы и конвертируются в понятную битовую последовательность для канального уровня.

2) На канальном уровне проверяется MAC-адрес назначения (ему ли это адресовано). Если да, то проверяется кадр на целостность и отсутствие ошибок, если все прекрасно и данные целы, он передает их вышестоящему уровню.

3) На сетевом уровне проверяется IP адрес назначения. И если он верен, данные поднимаются выше. Не стоит сейчас вдаваться в подробности, почему у нас адресация на канальном и сетевом уровне. Это тема требует особого внимания, и я подробно объясню их различие позже. Главное сейчас понять, как данные упаковываются и распаковываются.

4) На транспортном уровне проверяется порт назначения (не адрес). И по номеру порта, выясняется какому приложению или сервису адресованы данные. У нас это веб-сервер и номер порта - 80.

5) На этом уровне происходит установление сеанса между компьютером и сервером.

6) Уровень представления видит, как все должно быть структурировано и приводит информацию в читабельный вид.

7) И на этом уровне приложения или сервисы понимают, что надо выполнить.

Много было написано про модель OSI. Хотя я постарался быть максимально краток и осветить самое важное. На самом деле про эту модель в Интернете и в книгах написано очень много и подробно, но для новичков и готовящихся к CCNA, этого достаточно. Из вопросов на экзамене по данной модели может быть 2 вопроса. Это правильно расположить уровни и на каком уровне работает определенный протокол.

Как было написано выше, модель OSI в наше время не используется. Пока разрабатывалась эта модель, все большую популярность получал стек протоколов TCP/IP. Он был значительно проще и завоевал быструю популярность.
Вот так этот стек выглядит:


Как видно, он отличается от OSI и даже сменил название некоторых уровней. По сути, принцип у него тот же, что и у OSI. Но только три верхних уровня OSI: прикладной, представления и сеансовый объединены у TCP/IP в один, под названием прикладной. Сетевой уровень сменил название и называется - Интернет. Транспортный остался таким же и с тем же названием. А два нижних уровня OSI: канальный и физический объединены у TCP/IP в один с названием - уровень сетевого доступа. Стек TCP/IP в некоторых источниках обозначают еще как модель DoD (Department of Defence). Как говорит википедия, была разработана Министерством обороны США. Этот вопрос встретился мне на экзамене и до этого я про нее ничего не слышал. Соответственно вопрос: «Как называется сетевой уровень в модели DoD?», ввел меня в ступор. Поэтому знать это полезно.

Было еще несколько сетевых моделей, которые, какое то время держались. Это был стек протоколов IPX/SPX. Использовался с середины 80-х годов и продержался до конца 90-х, где его вытеснила TCP/IP. Был реализован компанией Novell и являлся модернизированной версией стека протоколов Xerox Network Services компании Xerox. Использовался в локальных сетях долгое время. Впервые IPX/SPX я увидел в игре «Казаки». При выборе сетевой игры, там предлагалось несколько стеков на выбор. И хоть выпуск этой игры был, где то в 2001 году, это говорило о том, что IPX/SPX еще встречался в локальных сетях.

Еще один стек, который стоит упомянуть - это AppleTalk. Как ясно из названия, был придуман компанией Apple. Создан был в том же году, в котором состоялся релиз модели OSI, то есть в 1984 году. Продержался он совсем недолго и Apple решила использовать вместо него TCP/IP.

Также хочу подчеркнуть одну важную вещь. Token Ring и FDDI - не сетевые модели! Token Ring - это протокол канального уровня, а FDDI это стандарт передачи данных, который как раз основывается на протоколе Token Ring. Это не самая важная информация, так как эти понятия сейчас не встретишь. Но главное помнить о том, что это не сетевые модели.

Вот и подошла к концу статья по первой теме. Хоть и поверхностно, но было рассмотрено много понятий. Самые ключевые будут разобраны подробнее в следующих статьях. Надеюсь теперь сети перестанут казаться чем то невозможным и страшным, а читать умные книги будет легче). Если я что-то забыл упомянуть, возникли дополнительные вопросы или у кого есть, что дополнить к этой статье, оставляйте комментарии, либо спрашивайте лично. Спасибо за прочтение. Буду готовить следующую тему.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Протяженность линий электропередачи. Установленная мощность трансформаторных подстанций. Энергетические показатели сети. Суммарный максимум активной нагрузки потребителей. Годовой полезный отпуск электроэнергии. Потери мощности в электрической сети.

    дипломная работа , добавлен 24.07.2012

    Разработка схем электрической сети района и предварительное распределение мощностей. Выбор номинальных напряжений линий, сечения и марок проводов, трансформаторов. Определение потерь мощности в трансформаторах, баланс активных и реактивных мощностей.

    дипломная работа , добавлен 04.09.2010

    Разработка схем электрической сети района. Предварительное распределение мощностей. Выбор номинальных напряжений линий, сечения и марок проводов. Определение потерь мощности в линиях. Выбор трансформаторов и схем подстанций. Расчёт количества линий.

    дипломная работа , добавлен 05.04.2010

    Разработка электрической сети района и предварительное распределение мощностей. Выбор номинальных напряжений, сечений и марок проводов. Определение потерь мощности в трансформаторах. Баланс активных и реактивных мощностей в системе. Выбор схем подстанций.

    дипломная работа , добавлен 16.06.2014

    Построение вариантов схемы электрической сети. Предварительный расчет потоков мощности. Выбор номинальных напряжений для кольцевой сети. Определение сопротивлений и проводимостей линий электропередачи. Проверка сечений по техническим ограничениям.

    курсовая работа , добавлен 29.03.2015

    Выбор вариантов развития существующей сети. Выбор номинальных напряжений сооружаемых воздушных линий радиального варианта сети. Определение сечений проводов сооружаемых линий радиального варианта сети. Выбор понижающих трансформаторов на подстанции.

    курсовая работа , добавлен 22.07.2014

    Выбор вариантов схемы соединений сети, их обоснование и предъявляемые требования. Определение номинальных напряжений сети, сечений проводов, проверка по техническим ограничениям. Приближенное определение потерь напряжения. Составление балансов мощностей.

    курсовая работа , добавлен 23.11.2014

    Составление вариантов схемы электрической сети и выбор наиболее рациональных из них. Расчет потокораспределения, номинальных напряжений, мощности в сети. Подбор компенсирующих устройств, трансформаторов и сечений проводов воздушных линий электропередачи.

    курсовая работа , добавлен 24.11.2013

Введение

Электрическая подстанция-это установка, предназначенная для преобразования и распределения электрической энергии. Подстанции состоят из трансформаторов, сборных шин и коммутационных аппаратов, а также вспомогательного оборудования: устройств релейной защиты и автоматики, измерительных приборов. Подстанции предназначены для связи генераторов и потребителей с линиями электропередачи, а также для связи отдельны частей электрической системы.

Современные энергетические системы состоят из сотен связанных между собой элементов, влияющих друг на друга. Проектирование должно проводиться с учетом основных условий совместной работы элементов, влияющую на данную проектируемую часть системы. Намеченные проектные варианты должны удовлетворять следующим требованиям: надежности, экономичности, удобства эксплуатации, качества энергии и возможности дальнейшего развития.

В ходе курсового проектирования приобретаются навыки пользования справочной литературой, ГОСТами, едиными нормами и укрупненными показателями, таблицами.

В задачу курсового проектирования водит изучение практически инженерных методов решения комплексны вопросов сооружения линий электропередач, подстанций и других элементов электрически сетей и систем, а также дальнейшее развитие расчетно-графически навыков необходимых для проектной работы. Особенность проектирования электрических систем и сетей заключается в тесной взаимосвязи технических и экономических расчетов. Выбор наиболее дачного варианта электрической подстанции производится не только путем теоретических расчетов, но и на основе различных соображений.


ПРИМЕР РАСЧЕТА ОДНОГО ИЗ ВАРИАНТОВ СХЕМ

РАЙОННОЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ

Исходные данные

Масштаб: в 1 клетке – 8,5 км;

Коэффициент мощности на подстанции "А", отн. ед.: ;

Напряжение на шинах подстанции "А", кВ: , ;

Число часов использования максимальной нагрузки: ;

Максимальная активная нагрузка на подстанции, МВт: , , , , ;



Продолжительность перегрузки силовых трансформаторов в течение суток: ;

Коэффициенты реактивной мощности нагрузки на подстанциях имеют следующие значения: , , , , .

В составе потребителей на всех ПС имеются нагрузки I и II категорий по надежности электроснабжения с преобладанием нагрузок II категории.

1.1. Географическое расположение источника питания «А» и 5 узлов нагрузки

Выбор конфигурации распределительной сети

Выбор рациональной конфигурации распределительной сети является одним из главных вопросов, решаемых на начальных этапах проектирования. Выбор схемы сети производится на основе технико-экономического сопоставления ряда её вариантов. Сопоставимые варианты должны отвечать условиям технической осуществимости каждого из них по параметрам основного электрооборудования (провода, трансформаторы и т.п.), а также быть равноценными по надежности электроснабжения потребителей, относящихся к первой категории по .

Разработку вариантов нужно начинать на основе следующих принципов:

а) схема сети должна быть по возможности (обоснованно) простой и передача электроэнергии потребителям должна осуществляться по возможно кратчайшему пути, без обратных перетоков мощности, что обеспечивает снижение стоимости сооружения линий и уменьшение потерь мощности и электроэнергии;

б) схемы электрических соединений распределительных устройств понижающих подстанций также должны быть, возможно (обоснованно) простыми, что обеспечивает снижение их стоимости сооружения и эксплуатации, а также повышение надежности их работы;

в) следует стремиться осуществлять электрические сети с минимальным количеством трансформации напряжения, что снижает необходимую установленную мощность трансформаторов и автотрансформаторов, а также потери мощности и электроэнергии;

г) схемы электрических сетей должны обеспечивать надежность и необходимое качество электроснабжения потребителей, и не допускать перегрева и перегруза электрооборудования линий и подстанций (по токам в различных режимах сети, по механической прочности и т.п.)

Согласно ПУЭ при наличии потребителей I и II категорий на ПС электроснабжение от сетей энергосистемы должно выполняться не менее чем по двум линиям, подключенным к независимым источникам питания. С учетом выше изложенного и с учетом альтернативности качеств и показателей определенных типов схем сетей рекомендуется формирование в первую очередь вариантов схем сетей: радиального, радиально-магистрального, простейшего кольцевого типов.

Опираясь на изложенные условия, составим десять вариантов схем районной электрической сети (рис. 1.2.).

Схема№1 Схема№2

Схема№3 Схема№4

Схема№4 Схема№5

Схема№7 Схема№8

Рис.1.2. Варианты конфигурации схем электрической сети.

Из составленных схем для дальнейших расчетов по комплексу показателей и характеристик выбираем два наиболее рациональных варианта (№1 и № 2).

I. Вариант I (схема №1) предполагает присоединение подстанций № 1, 2, 3, 4, 5 к узлу А посредством двухцепных радиальных линий (строительство одноцепных и двухцепных линий 110 кВ общей длиной 187 км).

II. Вариант II (схема №2) предполагает присоединение подстанций №3 и №2 в кольцо от узла А, присоединение подстанций №4 и №5 в кольцо от узла А присоединение подстанции № 1 к узлу А посредством двухцепных радиальных линий (строительство одноцепных и двухцепных линий 110 кВ общей длиной 229,5 км).

Абдильбаев Р.Б.

Таразский государственный университетим.М.Х.Дулати, Казахстан

РАЗРАБОТКА ВАРИАНТОВ КОНФИГУРАЦИИ СЕТИ

Схемы электрических сетей должны с наименьшими затратами обеспечить необходимую надежность электроснабжения, требуемое качество энергии у приемников, удобство и безопасность эксплуатации сети, возможность ее дальнейшего развития и подключения новых потребителей. Электрическая сеть должна обладать также необходимой экономичностью и гибкостью.

В проектной практике для построения рациональной конфигурации сети применяют повариантный метод, согласно которому для заданного расположения потребителей намечается несколько вариантов, и из них на основе технико-экономического сравнения выбирается лучший.

В соответствии с Правилами Устройства Электроустановок (ПУЭ) нагрузки I категории должны обеспечиваться электроэнергией от двух независимых источников питания, и перерыв в их электроснабжении допускается лишь на период автоматического включения резервного питания. В большинстве случаев двухцепная линия не удовлетворяет требованиям надежности электроснабжения потребителей I категории, так как при повреждении опор, гололеде возможен полный перерыв питания. Для таких потребителей необходимо предусматривать не менее двух отдельных линий.

Для потребителей II категории в большинстве случаев также предусматривают питание по двум отдельным линиям либо по двухцепной линии. Однако, учитывая непродолжительность времени аварийного ремонта воздушных линий, электроснабжение нагрузок II категории допускается производить по одной воздушной линии.

Для электроприемника III категории достаточно питания по одной линии, питающейся от одного источника или в виде отпайки проходящей вблизи линии. Однако, здесь при аварийных и плановых ремонтов необходимо обеспечить время восстановления питания в пределах одних суток.

Принимаемая схема должна быть удобной и гибкой в эксплуатации, желательно однородной, такими качествами обладают многоконтурные схемы одного номинального напряжения. Отключение любой цепи в такой схеме сказывается в незначительной степени на ухудшении режима работы сети в целом.

Исходя из всех вышеперечисленных требований разработаны следующие варианты схемы сети для электроснабжения потребителей, которые представлены на рисунке 1.

Рис. 1. Разработанные варианты схемы районной электрической сети.

В качестве критерия сопоставления вариантов сети на данном этапе проектирования используем суммарные длины линий по каждому из вариантов. Этот критерий основывается на предположении, что все варианты схемы являются одного класса номинального напряжения и выполнены одинаковым сечением проводов на всех участках, использованы одинаковые типы опор, конструкции фаз и т.п.

Естественно, что наиболее рациональными и экономичными будут являться варианты с наименьшими суммарными длинами линий (с обязательным соблюдением требований по надёжности электроснабжения потребителей).

Длину линий определяем с учетом их непрямолинейности и возможных отклонений от намеченных трасс. Действительная длина принимается на 15% больше длины, измеренной по прямой линии.

Таблица 1 . Суммарные длины линий электропередач

Схема

№1

№2

№3

№4

Длина, км

405,24

377,52

381,48

384,12

Исходя, что схемы на рис.1.б и на рис.1.в имеют наименьшую суммарную протяженность, то они в дальнейшем и будут использоваться для подробного технико-экономического сравнения.

Заключение

Проведена формализация комплекса задач оптимального выбора решений при обосновании рациональной конфигурации систем электроснабжения в зависимости от территориальных уровней .

Литература

1. Справочник по проектированию электроэнергетических систем. Под ред. И.Ш. Шапиро, С.С. Рокотяна, - М.: Энергоатомиздат, 1985.

2. Методическое указание №1293 к курсовому проекту по курсу ² Электрические системы и сети ² для студентов спец. 10.04. Составил: Лычев П.В., Селиверстов Г.И.– ГПИ, 1990.

3. Лычев П.В., Федин В.Т. Электрические системы и сети. Решение практических задач: Учебное пособие для вузов. – Мн.: ДизайнПРО, 1997.

4. Методическое указание №3260 пособие по курсовому и дипломному проектированию для студентов специальности 1-43 01 03 ² Электроснабжение ² .– ГГТУ им. П.О. Сухого, Гомель, 2006.

5. Правила устройства электроустановок. –М.:Энергоатомиздат,1986.

Сетевую архитектуру можно понимать как поддерживающую конструкцию или инфраструктуру, лежащую в основе функционирования сети. Данная инфраструктура состоит из нескольких главных составляющих, в частности компоновка или топология сети, кабельная проводка и соединительные устройства - мосты, маршрутизаторы и коммутаторы. Проектируя сеть, необходимо принимать во внимание каждый из этих сетевых ресурсов и определить, какие конкретно средства следует выбрать и как их надо распределить по сети, чтобы оптимизировать производительность, упростить управление оборудованием и оставить возможности для последующего роста. В курсовом проекте следует создать свою конфигурацию сети в соответствии с конкретным заданием. Рассмотрим, какие вопросы должны быть решены в разделах курсового проекта.

Введение

Во введении необходимо отметить актуальность проектирования и внедрения корпоративной сети (КС) в данной организации. Какие плюсы при внедрении КС возникают на предприятии.

1. Схема информационных потоков на предприятии и расчет объема потоков между отделами.

Схема информационных потоков представляется в виде диаграммы (графа), в которой вершины состояний отражают отделы, а дуги информационные потоки.

В первой главе необходимо провести организационный анализ структуры предприятия (фирмы)- выделить отделы, операции в отделах, необходимая информация для отделов, передача информации между отделами, виды информации, предварительные объемы обмена информации. Выделяем на информационной схеме преимущественные объемы связей между отделами, что может учитываться при выборе и анализе пропускного канала между данными отделами, которые отразим на схеме магистральные потоки информации. Определяем, как идет распределение трафика между отделами в сети. В таблице 1.2 для примера показан средний объём информации за один рабочий день (8 часов) в Мбайт, отправляемый и принимаемый подразделениями фирмы, а также между отделами центра и филиалами. Необходимо заметить, что трафик складывается из собственно рабочей информации плюс 10% служебной информации, также учитываем (условно), что при передаче по сети информации она увеличивается в 1,7 раза за счет помехоустойчивого кодирования.

Таблица 1.2

Отделы получают информацию

отделы отсылают информацию

Σ ИСХ. ИНФ.

Σ ВХОД. ИНФ.

Предпроектное обследование предприятия. В этом разделе необходимо привести результаты исследования внутренних и внешних информационных потоков предприятия, которые должны обрабатывать проектируемые сети (обычно в виде гистограммы максимально суммарной почасовой информационной нагрузки в течение рабочего цикла (дня) предприятия). Гистограмма должна быть оформлена в виде плаката.

По структурно-организационной схеме предприятия, рис 1.1,а, для каждого рабочего часа определяется информационная нагрузка каждой информационной связи каждого структурного подразделения (отдела) предприятия.

Информационная нагрузка одной информационной связи определяется по результатам анализа документооборота в обоих направлениях между данным подразделением и каждым подразделением, непосредственно с ним связанным. Исходным носителям информации считается стандартный лист формата А4, содержащий 2000 алфавитно-цифровых знаков и пробелов. При 8-битном кодировании информационная емкость такого листа составляет Е=200*8=16000 бит.

Информационная часовая нагрузка одной организационной связи равна:

где Е – информационная емкость стандартного листа документа;

n1 – число листов, поступающих в данное подразделение за час;

n2 – число листов, отправляемых данными подразделениями в час.

Информационная часовая нагрузка организационных связей определятся по формуле 1.1 для всех подразделений предприятия. При этом не учитываются информационные связи с теми подразделениями, для которых расчет уже производился.

Суммарная часовая информационная нагрузка всех организационных связей предприятия равна:

(1.2)

где N – число организационных связей в схеме предприятия.

На гистограмме, рис 4.1.б для каждого рабочего часа показывается значение ИНS, и выбирается максимальное значение ИНS, макс для рабочего дня (цикла) предприятия, которое является исходным для определения потребной полезной пропускной способности базовой технологии проектируемой сети.

Общая пропускная способность Ср сети определяется по формуле:

(1.3)

где k1=(1,1¸1,5) – коэффициент учета протокольной избыточности стека протоколов, измеренного в практикуемой сети; для стека TCP/IP k1»1,3;

k2 – коэффициент запаса производительности для будущего расширения сети, обычно k2»2.

Логическое проектирование ВС. Определяется логическая структура ВС (для ЛВС – на основе расчётов коэффициента загрузки, для КВС – на основе анализа внешних информационных потоков); выполняется логическое структурирование ЛВС и окончательно выбираются сетевые технологии; разрабатывается логическая схема ВС.

Необходимые расчеты для ЛВС выполняются в следующей последовательности:

Определение коэффициента нагрузки неструктурированной локальной вычислительной сети:

(1.4)

где Смакс – максимальная пропускная способность базовой технологии сети.

Проверка выполнения условия допустимой нагрузки ЛВС (домена коллизий):

(1.5)

где - коэффициент нагрузки неструктурированной сети или домена коллизий – логического сегмента ЛВС.

Примечание: Если условия (1.5) не выполняются необходимо выполнить логическую структуризацию ЛВС:

последовательно разделять сеть на логические сегменты (домены коллизий) по Nл.с. компьютеров в каждом логическом сегменте, проверяя на каждой итерации выполнение условия (1.5):

Определение межгруппового трафика и трафика к серверу:

Определение коэффициента нагрузки по межгрупповому трафику и трафику к серверу:

(1.6)

Если условие (1.6) не выполняется, принять значение Смакс для межгруппового обмена в сети равным следующей по производительности разновидности базовой технологии. Например, для Ethernet, Fast Ethernet, Gigabit Ethernet, до тех пор, пока условие (1.6) не будет выполнено.