Урок "построение циркулем и линейкой". Построение с помощью циркуля и линейки отрезка равного произведению или отношению двух других - творческая работа Построение фигур с помощью циркуля

Инструкция

Поставьте иглу циркуля в отмеченную точку. Нарисуйте ножкой с грифелем дугу окружности отмеренного радиуса.

В любом месте по окружности нарисованной дуги поставьте точку. Это будет вторая вершина B создаваемого треугольника.

Аналогичным способом поставьте ножку на вторую вершину. Проведите еще одну окружность так, чтобы она пресекалась с первой.

В точке пересечения обоих проведенных дуг и находится третья вершина C создаваемого треугольника. Отметьте ее на рисунке.

Получив все три вершины, соедините их прямыми линиями с помощью любой ровной поверхности (лучше линейки). Треугольник ABC построен.

Если окружность касается всех трех сторон данного треугольника, а её центр находится внутри треугольника, то ее называют вписанной в треугольник.

Вам понадобится

  • линейка, циркуль

Инструкция

Из вершин треугольника (стороны противоположной делимому углу) циркулем проводят дуги окружности произвольного радиуса до пересечения их между собой;

Точку пересечения дуг по линейке соединяют с вершиной делимого угла;

Тоже самое проделывают с любым другим углом;

Радиусом вписанной в треугольник окружности будет отношение площади треугольника и его полупериметра: r=S/p , где S - площадь треугольника, а p=(a+b+c)/2 - полупериметр треугольника.

Радиус вписанной в треугольник окружности равноудален от всех сторон треугольника.

Источники:

  • http://www.alleng.ru/d/math/math42.htm

Рассмотрим задачу построения треугольника при условии, что известны три его стороны или одна сторона и два угла.

Вам понадобится

  • - циркуль
  • - линейка
  • - транспортир

Инструкция

Допустим, даны три стороны : a, b и с. Пользуясь , несложно с такими сторонами. Для начала выберем самую длинную из этих сторон, пусть это будет сторона с, и начертим ее. Затем установим раствор циркуля на величину другой стороны, стороны a, и начертим циркулем окружность радиуса a с центром на одном из концов стороны c. Теперь установим раствор циркуля на величину стороны b и начертим окружность с центром на другом конце стороны c. Радиус этой окружности равен b. Соединим точку пересечения окружностей с центрами и получим треугольник с искомыми сторонами.

Чтобы начертить треугольник с заданной стороной и двумя прилегающими углами, возьмите транспортир. Начертите сторону указанной длины. На краях ее отложите транспортиром углы. На пересечении сторон углов получите третью вершину треугольника.

Видео по теме

Обратите внимание

Для сторон треугольника справедливо следующее утверждение: сумма длин двух любых сторон должна быть больше третьей. Если это не выполняется, то построить такой треугольник невозможно.

Окружности в шаге 1 пересекаются в двух точках. Можно выбрать любую, треугольники будут равными.

Правильный треугольник - тот, у которого все стороны обладают одинаковой длиной. Исходя из этого определения, построение подобной разновидности треугольника является нетрудной задачей.

Вам понадобится

  • Линейка, лист разлинованной бумаги, карандаш

Инструкция

С помощью линейки соединить отмеченные на листке точки последовательно, друг за другом так, как это показано на рисунке 2.

Обратите внимание

В правильном (равностороннем) треугольнике все углы равны 60 градусам.

Полезный совет

Равносторонний треугольник так же является и равнобедренным. Если треугольник равнобедренный, то это означает, что 2 из 3-х его сторон равны, а третья сторона считается основанием. Любой правильный треугольник является равнобедренным, в то время как обратное утверждение не верно.

У любого равностороннего треугольника одинаковы не только стороны, но и углы, каждый из которых равен 60 градусам. Однако чертеж такого треугольника, построенный при помощи транспортира, не будет обладать высокой точностью. Поэтому для построения данной фигуры лучше воспользоваться циркулем.

Вам понадобится

  • Карандаш, линейка, циркуль

Инструкция

Затем возьмите циркуль, установите его в из концов (будущей вершине треугольника) и проведите окружность с радиусом, равным длине этого отрезка. Можно не проводить окружность целиком, а начертить лишь ее четверть, от противоположного края отрезка.

Теперь переставьте циркуль в другой конец отрезка и снова начертите окружность того же радиуса. Здесь будет достаточно построить окружности, проходящую от дальнего конца отрезка до пересечения с уже построенной дугой. Полученная точка будет третьей вершиной вашего треугольника.

Чтобы закончить построение, снова возьмите линейку с карандашом и соедините точку пересечения двух окружностей с обоими концами отрезка. Вы получите треугольник, все три стороны которого абсолютно равны, – это можно будет легко проверить с помощью линейки.

Видео по теме

Треугольник – это многоугольник, у которого три стороны. Равносторонним или правильным треугольником называют треугольник, у которого все стороны и углы равны. Рассмотрим, как можно нарисовать правильный треугольник.

Вам понадобится

  • Линейка, циркуль.

Инструкция

С помощью циркуля нарисуйте еще одну окружность, центр которой будет в точке В, а радиус равен отрезку ВА.

Окружности будут пересекаться в двух точках. Выберите любую из них. Назовите ее С. Это будет третьей вершиной треугольника.

Соедините вершины между собой. Получившийся треугольник будет правильным. Убедитесь в этом, померив его стороны линейкой.

Рассмотрим способ построения правильного треугольника с помощью двух линеек. Начертите отрезок ОК, он будет одной из сторон треугольника, а точки О и К его вершинами.

Не сдвигая линейки после построения отрезка ОК, приложите перпендикулярно к ней еще одну линейку. Проведите прямую m пересекающую отрезок ОК в середине.

С помощью линейки отмерьте отрезок ОЕ, равный отрезку ОК так, чтобы один его конец совпадал с точкой О, а другой находился на прямой m. Точка Е буде третьей вершиной треугольника.

Закончите построение треугольника, соединив точки Е и К. Проверьте правильность построения с помощью линейки.

Обратите внимание

Убедиться в том, что треугольник правильный можете с помощью транспортира, измерив углы.

Полезный совет

Равносторонний треугольник так же можно начертить на листе в клетку с помощью одной линейки. Вместо другой линейки используйте перпендикулярные линии.

Источники:

  • Классификация треугольников. Равносторонние треугольники
  • Что такое треугольник
  • построение правильного треугольника

Вписанным называется такой треугольник, все вершины которого находятся на окружности. Построить его можно, если знать хотя бы одну сторону и угол. Окружность называется описанной, и она будет единственной для данного треугольника.

Вам понадобится

  • - окружность;
  • - сторона и угол треугольника;
  • - лист бумаги;
  • - циркуль;
  • - линейка;
  • - транспортир;
  • - калькулятор.

Инструкция

От точки А с помощью транспортира отложите заданный угол. Продолжите сторону угла до пересечения с окружностью и поставьте точку С. Соедините точки В и С. У вас получился треугольник АВС. Он может быть любого типа. Центр окружности у остроугольного треугольника него, у тупоугольного - вне, а у прямоугольного - на гипотенузе. Если вам задан не угол, а, например, три стороны треугольника, вычислите один из углов по радиусу и известной стороне.

Значительно чаще приходится иметь дело с обратным построением, когда задан треугольник и надо вокруг него описать окружность. Вычислите его радиус. Сделать это можно по нескольким формулам, в зависимости от того, что вам дано. Радиус можно найти, например, по стороне и синусу противолежащего угла. В этом случае он равен длине стороны, разделенной на удвоенный синус противолежащего угла. То есть R=a/2sinCAB. Можно его выразить и через произведение сторон, в этом случае R=abc/‭√(‬a+b+c)(a+b-c)(a+c-b)(b+c-a).

Определите центр окружности. Разделите все стороны пополам и проведите серединам перпендикуляры. Точка их пересечения и будет центром окружности. Начертите ее так, чтобы она пересекла все вершины углов.

Две короткие стороны прямоугольного треугольника, которые принято называть катетами, по определению должны быть перпендикулярны между собой. Это свойство фигуры значительно облегчает ее построение. Однако возможность точно определить перпендикулярность есть не всегда. В таких случаях можно рассчитать длины всех сторон - они позволят построить треугольник единственно возможным, а поэтому правильным, способом.

Вам понадобится

  • Бумага, карандаш, линейка, транспортир, циркуль, угольник.

Энциклопедичный YouTube

    1 / 5

    ✪ 7 класс, 22 урок, Построения циркулем и линейкой

    ✪ Геометрия 7 Окружность Построения циркулем и линейкой

    ✪ Построение треугольника по двум сторонам и углу между ними

    ✪ Геометрия 7 Примеры задач на построение

    ✪ 7 класс, 23 урок, Примеры задач на построение

    Субтитры

Примеры

Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB .
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q .
  • Находим искомую середину отрезка AB - точку пересечения AB и PQ .

Формальное определение

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку;
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке;
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками;
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Другая известная и неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис . Эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла , например томагавка .

Допустимые отрезки для построения с помощью циркуля и линейки

С помощью этих инструментов возможно построение отрезка, который по длине:

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной . Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.

Возможные и невозможные построения

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

  • Построение решений линейных уравнений .
  • Построение решений уравнений, сводящихся к решениям квадратных уравнений .

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x 3 − 2 = 0 , {\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения ( 2 3 {\displaystyle {\sqrt[{3}]{2}}} ) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos ⁡ (2 π 17) = − 1 16 + 1 16 17 + 1 16 34 − 2 17 + {\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} + 1 8 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 , {\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},} что, в свою очередь, следует из возможности сведения уравнения вида x F n − 1 = 0 , {\displaystyle x^{F_{n}}-1=0,} где F n {\displaystyle F_{n}} - любое простое число Ферма , с помощью замены переменной к квадратному уравнению.

Вариации и обобщения

  • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Очевидно, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности,
    • невозможно даже разбить отрезок на две равные части,
    • также невозможно найти центр данной окружности.
Однако,
  • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (

Если вполне естественно, что с допущением большего разнообразия инструментов оказывается возможным решать более обширное множество задач на построение, то можно было бы предвидеть, что, напротив, при ограничениях, налагаемых на инструменты, класс разрешимых задач будет суживаться. Тем более замечательным нужно считать открытие, сделанное итальянцем Маскерони (1750-1800): все геометрические построения, выполнимые с помощью циркуля и линейки, могут быть выполнены с помощью одного только циркуля. Следует, конечно, оговорить, что провести на самом деле прямую линию через две данные точки без линейки невозможно, так что это основное построение не покрывается теорией Маскерони. Вместо того приходится считать, что прямая задана, если заданы две ее точки. Но с помощью одного лишь циркуля удается найти точку пересечения двух прямых, заданных таким образом, или точку пересечения прямой с окружностью.

Вероятно, простейшим примером построения Маскерони является удвоение данного отрезка Решение было уже дано на стр. 185. Далее, на стр. 186 мы научились делить данный отрезок пополам. Посмотрим теперь, как разделить пополам дугу окружности с центром О. Вот описание этого построения. Радиусом проводим две дуги с центрами От точки О откладываем на этих дугах две такие дуги и что Затем находим точку пересечения дуги с центром Р и радиусом и дуги с центром и радиусом Наконец, взяв в качестве радиуса отрезок опишем дугу с центром Р или до пересечения с дугой точка пересечения и является искомой средней точкой дуги Доказательство предоставляем читателю в качестве упражнения.

Рис. 48. Пересечение окружности и прямой, не проходящей через центр

Было бы невозможно доказать основное утверждение Маскерони, указывая для каждого построения, выполнимого с помощью циркуля и линейки, как его можно выполнить с помощью одного циркуля: ведь возможных построений бесчисленное множество. Но мы достигнем той же цели, если установим, что каждое из следующих основных построений выполнимо с помощью одного циркуля:

1. Провести окружность, если заданы центр и радиус.

2. Найти точки пересечения двух окружностей.

3. Найти точки пересечения прямой и окружности.

4. Найти точку пересечения двух прямых.

Любое геометрическое построение (в обычном смысле, с допущением циркуля и линейки) составляется из выполнения конечной последовательности этих элементарных построений. Что первые два из них выполнимы с помощью одного циркуля, ясно непосредственно. Более трудные построения 3 и 4 выполняются с использованием свойств инверсии, рассмотренных в предыдущем пункте.

Обратимся к построению 3: найдем точки пересечения данной окружности С с прямой, проходящей через данные точки Проведем дуги с центрами и радиусами, соответственно равными и кроме точки О, они пересекутся в точке Р. Затем построим точку обратную точке Р относительно окружности С (см. построение, описанное на стр. 186). Наконец, проведем окружность с центром и радиусом (она непременно пересечется с С): его точки пересечения с окружностью С и будут искомыми. Для доказательства достаточно установить, что каждая из точек находится на одинаковых расстояниях от (что касается точек то аналогичное их свойство сразу вытекает из построения). Действительно, Достаточно сослаться на то обстоятельство, что точка, обратная точке отстоит от точек на расстояние, равное радиусу окружности С (см. стр. 184). Стоит отметить, что окружность, проходящая через точки является обратной прямой в инверсии относительно круга С, так как эта окружность и прямая пересекаются

Рис. 49. Пересечение окружности и прямой, проходящей через центр

с С в одних и тех же точках. (При инверсии точки основной окружности остаются неподвижными.)

Указанное построение невыполнимо только в том случае, если прямая проходит через центр С. Но тогда точки пересечения могут быть найдены посредством построения, описанного на стр. 188, как получающихся, когда мы проводим произвольную окружность с центром В, пересекающуюся с С в точках Метод проведения окружности, обратной прямой, соединяющей две данные точки, немедленно дает и построение, решающее задачу 4. Пусть прямые даны точками (рис. 50).

Рис. 50. Пересечение двух прямых

Проведем произвольную окружность С и с помощью указанного выше метода построим окружности, обратные прямым и Эти окружности пересекаются в точке О и еще в одной точке Точка X, обратная точке и есть искомая точка пересечения: как ее построить - уже было разъяснено выше. Что X есть искомая точка, это ясно из того факта, что есть единственная точка, обратная точке, одновременно принадлежащей обеим прямым и следовательно, точка X, обратная должна лежать одновременно и на и на

Этими двумя построениями заканчивается доказательство эквивалентности между построениями Маскерони, при которых разрешается пользоваться только циркулем, и обыкновенными геометрическими построениями с циркулем и линейкой.

Мы не заботились об изяществе решения отдельных проблем, нами здесь рассмотренных, так как нашей целью было выяснить внутренний смысл построений Маскерони. Но в качестве примера мы еще укажем построение правильного пятиугольника; точнее говоря, речь идет о нахождении каких-то пяти точек на окружности, которые могут служить вершинами правильного вписанного пятиугольника.

Пусть А - произвольная точка на окружности К. Так как сторона правильного вписанного шестиугольника равна радиусу круга, то не представит труда отложить на К такие точки что

Известный еще с античных времен.

В задачах на построение возможны следующие операции:

  • Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий.
  • С помощью циркуля нарисовать круг с центром в построенной точке и радиусом, равным расстоянию между двумя уже построенными точками.
  • С помощью линейки провести прямую, проходящую через две построенные точки.

При этом циркуль и линейка считаются идеальными инструментами, в частности:


1. Простой пример

Деление отрезка пополам

Задача. С помощью циркуля и линейки разделить данный отрезок AB на две равные части. Один из решений показано на рисунке:

  • Циркулем строим окружность с центром в точке A радиуса AB.
  • Строим окружность с центром в точке B радиуса AB.
  • Находим точки пересечения P и Q двух построенных кругов.
  • Линейкой проводим отрезок, соединяющий точки P и Q.
  • Находим точку пересечения AB и PQ. Это - искомая середина отрезка AB.

2. Правильные многоугольники

Античным геометрам были известны методы построения правильных n-угольников для , , и .


4. Возможные и невозможные построения

Все построения является ничем иным, как решением какого-либо уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа.

В рамках вищеокреслених требований, возможны следующие постройки:

Иначе говоря, можно построить лишь числа равны арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,


5. Вариации и обобщения


6. Забавные факты

  • GeoGebra , Kig, KSEG - программы, позволяющие выполнять построения с помощью циркуля и линейки.

Литература

  • А. Адлер. Теория геометрических построений, Перевод с немецкого Г. М. Фихтенгольц. Издание третье. Л., Навчпедвид, 1940-232 с.
  • И. Александров, Сборник геометрических задач на построение, Издание восемнадцатое, М., Навчпедвид, 1950-176 с.
  • Б. И. Аргунов, М Б Балк.

Материал данного параграфа может использоваться на факультативных занятиях. Он может быть представлен ученикам, как в форме лекции, так и в форме докладов учеников.

Большое внимание привлекали к себе в течение многих столетий задачи, которые с давних времен известны как "знаменитые задачи древности". Под этим названием обычно фигурировали три знаменитые задачи:

1) квадратура круга,

2) трисекция угла,

3) удвоение куба.

Все эти задачи возникли в глубокой древности из практических потребностей людей. На первом этапе своего существования они выступали как вычислительные задачи: по некоторым "рецептам" вычислялись приближенные значения искомых величин (площадь круга, длина окружности и др.). На втором этапе истории этих задач происходят существенные изменения их характера: они становятся геометрическими (конструктивными) задачами.

В Древней Греции в этот период им придали классические формулировки:

1) построить квадрат, равновеликий данному кругу;

2) разделить данный угол на три равные части;

3) построить ребро нового куба, объем которого был бы в два раза больше данного куба.

Все эти геометрические построения предлагалось выполнять с помощью циркуля и линейки.

Простота формулировок этих задач и "непреодолимые трудности", встретившиеся на пути их решения, способствовали росту их популярности. Стремясь дать строгие решения указанных задач, древнегреческие ученые "попутно" получали многие важные результаты для математики, что способствовало превращению разрозненных математических знаний в самостоятельную дедуктивную науку (особенно заметный след в то время оставили пифагорейцы, Гиппократ Хиосский и Архимед).

Задача об удвоении куба.

Задача удвоения куба состоит в следующем: зная ребро данного куба, построить ребро такого куба, объем которого был бы вдвое больше объема данного куба.

Пусть а - длина ребра данного куба, х - длина ребра искомого куба. Пусть - объем данного куба, а - объем искомого куба, тогда согласно формуле вычисления объема куба имеем, что: =, а так как, согласно условию задачи, то приходим к уравнению.

Из алгебры известно, что рациональные корни приведенного уравнения с целыми коэффициентами могут быть только целыми и содержаться среди делителей свободного члена уравнения. Но делители числа 2 служат только числа +1, - 1, +2, - 2, и ни одно из них не удовлетворяет исходному уравнению. Следовательно, уравнение рациональных корней не имеет, а это значит, что задача удвоения куба не может быть решена с помощью циркуля и линейки.

Задача удвоения куба с помощью циркуля и линейки может быть решена лишь приближенно. Приведем один из самых простых способов приближенного решения этой задачи.

Пусть АВ=ВС=а, причем АВВС. Строим AD=АС, тогда CD с точностью до 1%. В самом деле, CD 1,2586…. В тоже время =1,2599….

Задача о квадратуре круга.

Обоснование неразрешимости задачи с помощью циркуля и линейки.

Задача о квадратуре круга состоит в следующем: построить квадрат равновеликий кругу.

Пусть - радиус данного круга, -длина стороны искомого квадрата. Тогда, отсюда.

Следовательно, задача о квадратуре круга будет решена, если мы построим отрезок длиной. Если радиус данного круга принять за единичный отрезок (=1), то дело сведется к построению по единичному отрезку отрезка длиной.

Как известно, зная единичный отрезок, мы можем циркулем и линейкой строить только такие отрезки, длины которых выражаются через рациональные числа с помощью конечного множества рациональных операций и извлечением квадратных корней и, значит являются числами алгебраическими. При этом будут использованы далеко не все алгебраические числа. Например, нельзя построить отрезок длиной и т.д.

В 1882 г. Линдеманн доказал, что - трансцендентное. Отсюда следует, что циркулем и линейкой нельзя построить отрезок длиной и, следовательно, этими средствами задача о квадратуре круга неразрешима.

Приближенное решение задачи с помощью циркуля и линейки.

Рассмотрим один из приемов приближенного построения отрезков длиной. Этот прием состоит в следующем. Четверть окружности АВ с центром в точке О и радиусом, равным единице, делим пополам точкой С. На продолжении диаметра CD откладываем отрезок DE, равный радиусу. Из точки Е проводим лучи ЕА и ЕВ до пересечения с касательной в точке С. отсекаемый отрезок АВ приближенно равен длине дуги АВ, а удвоенный - полуокружности.

Относительная погрешность этого приближения не превышает 0,227%.

Задача о трисекции угла.

Обоснование неразрешимости задачи с помощью циркуля и линейки.

Задача о трисекции угла состоит в следующем : разделить данный угол на три равные части.

Ограничимся решением задачи для углов, не превышающих 90. Если - тупой угол, то =180-, где <90, так что, и поэтому задача о трисекции тупого угла сводится к задаче о трисекции острого угла.

Заметим, что (при наличии единичного отрезка) задача о построении угла (90) равносильна задаче о построении отрезка х=соs . В самом деле, если угол построен, то построение отрезка х=соs сводится к построению прямоугольного треугольника по гипотенузе и острому углу.

Обратно. Если построен отрезок х, то построение такого угла, что х=соs , сводится к построению прямоугольного треугольника по гипотенузе и катету.

Пусть - данный угол, - искомый угол, так что =. Тогда cos=cos 3. Известно, что cos 3= 4cos-3cos . Поэтому, полагая cos =, а cos =, приходим к уравнению:

cos =4cos-3cos ,

Отрезок, а следовательно, и угол могут быть построены лишь в том случае, когда это уравнение имеет хотя бы один рациональный корень. Но это имеет место не при всяком, и поэтому задача о трисекции угла, вообще говоря не разрешима с помощью циркуля и линейки. Например. При =60 получим =1 и найденное уравнение принимает вид: . Легко проверить, что это уравнение не обладает никаким рациональным корнем, откуда следует невозможность деления угла в 60 на три равные части с помощью циркуля и линейки. Таким образом, задача о трисекции угла не разрешима циркулем и линейкой в общем виде.

Приближенное решение задачи с помощью циркуля и линейки.

Рассмотрим один из способов приближенного решения задачи с помощью циркуля и линейки, предложенный Альбертом Дюрером (1471-1528).

Пусть дан угол ASB. Из вершины S произвольным радиусом описываем окружность и соединяем точки пересечения сторон угла с окружностью хордой АВ. Делим эту хорду на три равные части в точках R и R (А R= R R= RВ). из точек А и В, как из центров, радиусами А R= RВ описываем дуги, пересекающие окружность в точках Т и Т. Проведем RSAB. Радиусами А S= BS проводим дуги, пересекающие АВ в точках U и U. Дуги АТ, SS и TB равны между собой, так как стягиваются равными хордами.

Чтобы найти точки трисекции угла X и X, Дюрер делит на три равные части отрезки RU и RU точками PV и PV. Затем радиусами AV и BV проводим дуги, которые пересекают окружность в точках X и X. Соединив эти точки с S, получим деление данного угла на три равные части с хорошим приближением к истинным величинам.