Федеральное государственное образовательное учреждения высшего профессионального образования «Московский государственный университет имени М.В. Ломоносова

Легко смахивая паутину во время уборки или прогулки по лесу, немногие задумываются над тем, как и из чего паук её сплёл. А ведь это уникальное творение необычайной крепости. Узнаем, как пауки плетут свою сеть, откуда берут для неё материал и из чего она состоит, её формы и назначение, а также - как этот естественный материал может использовать человек.

Из чего состоит и где образуется

В состав паутины входят следующие вещества:

  • органические соединения - белок фиброин, из которого состоит основная внутренняя нить, и гликопротеиды, образующие нановолокна, расположенные вокруг основной нити. Благодаря фиброину паутина схожа по составу с шёлком, но гораздо эластичнее и прочнее;
  • неорганические вещества - химические соединения калия (гидрофосфат и нитрат). Их количество невелико, но они придают паутине антисептические свойства и защищают её от грибков и бактерий, создают благоприятную среду в железах паука для формирования нитей.

В брюшке у паука находятся паутинные железы, где образуется жидкое вещество, выходящее через прядильные трубочки, расположенные на паутинных бородавках. Их можно наблюдать в самом низу брюшка.

Вязкая жидкость выходит из трубочки и быстро твердеет на воздухе. При помощи задних лап паук вытягивает нить и использует для плетения. Один паук способен произвести нить 0,5 км в длину.

Знаете ли вы? Наиболее распространённый у нас паук-крестовик плетёт наиболее известную круглую ловчую сеть. Паучиха всегда выплетает конструкцию из 39 лучей, на которых находится 35 спиральных кругов с 1245 креплениями. Эту работу крестовики проделывают в ночное время и обновляют сеть через каждые 1–2 суток.

Какие есть виды

Пауки, в зависимости от вида, могут плести разную паутину.

Форма может быть следующей:


Как и сколько времени пауки плетут паутину

Наиболее известную круглую сеть паук плетёт 0,5–3 часа. Длительность плетения зависит от размера сетки и погоды. При этом лучшим помощником обычно становится ветер, относя выпущенную пауком нить на приличные расстояния.

Именно по ветру располагается паутина, натянутая между деревьями. Тоненькая ниточка переносится воздушным потоком, цепляется за соседнее дерево и прекрасно выдерживает передвижения своего создателя.

Он периодически обновляет плетёную сеть, так как со временем она теряет способность удерживать добычу.

Паук обычно поедает старую паутину, чтобы обеспечить себя строительным материалом, необходимым для плетения нового изделия. Автоматические действия для построения сети заложены на генетическом уровне и передаются по наследству.

Свойства и функции

Паутина обладает следующими свойствами:

  1. Очень прочная . Благодаря особой структуре её прочность сравнима с нейлоном, она в несколько раз прочнее стали.
  2. Внутренняя шарнирность . Подвешенный на паутинную нитку предмет можно как угодно долго вращать в одну сторону без образования перекручивания.
  3. Очень тонкая . Паучья нить имеет чрезвычайно малую толщину в сравнении с нитями других живых существ. У многих семейств пауков она составляет 2–3 микрона. Для сравнения - толщина нитки шелкопряда находится в пределах 14–26 микрон.
  4. Клейкость . Сами по себе нити не липкие, они усеяны каплями клейкой жидкости. Впрочем, паук для создания паутины выделяет не только клейкую, но и лишённую клеевых частичек нить.

Знаете ли вы? Удалось вывести вид шелковичных червей, производящих паучий шёлк. Исследователи из Америки смогли выработать технологию, позволяющую производить шёлковые волокна, имеющие свойства нитей паутины. Разработки в данном направлении ещё ведутся, а наладить производство таких волокон в промышленных масштабах на данный момент невозможно.

Паутина необходима для жизнедеятельности паука.
Она выполняет следующие функции:

  1. Убежище. Сотканная паутина служит хорошим укрытием от непогоды, а также от врагов в естественной среде.
  2. Создание благоприятного микроклимата. Например, у водяных пауков она наполнена воздухом и позволяет им находиться под водой. Ею они также закрывают раковины, в которых живут на дне.
  3. Ловушка для объектов пропитания. Паук плотояден, и его рацион состоит из насекомых, запутавшихся в липкой сети.
  4. Материал для создания кокона, из которого появляются новые паучки.
  5. Приспособление, играющее роль в процессе размножения. В ходе брачного периода женские особи сплетают длинную нить и оставляют висеть для того, чтобы проходивший рядом самец мог легко добраться до них.
  6. Обман хищников. Некоторые пауки-кругопряды с её помощью склеивают мусор и делают муляжи, к которым крепят нить. В случае опасности они дёргают за нить и отвлекают внимание от себя движущимся муляжом.
  7. Страховка. Перед нападением на жертву пауки крепят паутинную нить к какому-нибудь предмету и прыгают на добычу, используя нить как страховку.
  8. Средство передвижения. Молодые паучки при помощи длинной ниточки покидают «отчий дом». Пауки, обитающие в водоёмах, используют паутинное плетение как водный транспорт.

Как человек может использовать паутину

В Китае удивительной прочности и лёгкости тканевое полотно из паутины имеет название «ткани восточного моря». Полинезийцы используют паутинные нити больших тенетных пауков для шитья, а помимо этого плетут из них ещё и сети для ловли рыбы.

Учёные из Японии смогли создать струны для скрипки из паучьего шёлка. В наше время учёные стремятся синтезировать материал, обладающий свойствами паутинной нити, для использования в разных сферах - от производства бронежилетов до строительства мостов.

Но создать аналог вещества, которое вырабатывает паук, наука пока ещё не способна. Для этого некоторые исследователи пытаются внедрять паучьи гены другим живым организмам.

Биолог из Голландии Абдул Вахаба Эль-Хальбзури и художница Джалиль Ессайди путём исследовательской деятельности синтезировали суперпрочную ткань, которая представляет собой органическую комбинацию паутины и кожи человека.
До этого самой прочной тканью считались волокна кевлара, произведённые фирмой DuPont, прочность которых в 5 раз выше, чем у стали, - а полученный с использованием паучьих нитей материал в 15 раз прочнее, чем сталь. Но такое синтетическое вещество имеет ряд недостатков, над которыми ещё работают учёные.

Паутина примечательна не только своей прочностью. Антибактериальные свойства такого паучьего изделия использовали издавна. Ещё в древние века человек использовал паутинную сеточку как повязку из бинтов.

Такой липкий материал примыкал к коже и создавал барьер для попадания в рану бактерий и вирусов. Многие исследовательские учреждения работают с паутиной, пытаясь применить её свойства в медицине для создания материала, который сможет регенерировать конечности.

Учёные Европы заявляют, что в течение 5 лет смогут синтезировать искусственные сухожилия и связки из паутинных ниток.

Важно! Применение паутины в области медицины в первую очередь вызвано тем, что организм человека не производит отторжение внедрённого в него паучьего белка.

В современном мире нити паутины используют в оптической промышленности для обозначения перекрестья в оптических устройствах, а также как нитки в микрохирургии. Также известно, что микробиологи создали анализатор воздуха, используя свойства паучьих нитей улавливать из окружающей следы микрочастицы.
Надо отметить, что изучение свойств паутины позволит в будущем достичь больших результатов во многих отраслях производства, а также способствовать развитию и появлению передовых технологий, важных для человечества.

Почему паук не прилипает к своей паутине

Охотясь за своим жертвами (мухами, мошками и прочими насекомыми), которые запутываются в расставленных липких сетях, сам паук не приклеивается к собственной ловушке.

Рассмотрим факторы, благодаря которым паук не липнет к своему изделию:

  1. Не все паучьи сети покрыты клеевой жидкостью, а только некоторые участки, которые хорошо известны её создателю. Липкими являются именно круговые нити, а центральные не пропитаны клейким веществом.
  2. Лапки паука полностью покрыты коротенькими и тоненькими волосками. Эти волоски быстро снимают с нитей паутины невидимые глазом капельки клея. При нахождении лапки на участке паутинной сети частички клея находятся на волосках. Когда паук убирает лапку с участка без клея, волоски при скольжении о нить возвращают частички клея назад.
  3. Особое вещество, которое покрывает лапки паука, снижает уровень взаимодействия с клеем, что дополнительно помогает от прилипания.

Видео: о паутине пауков Итак, паутина синтезируется в паутинных железах, находящихся на брюшке пауков, и имеет преимущественно белковый состав. Эти членистоногие плетут её для разных потребностей, и она бывает различных форм.

Важно! Пыль, скопившаяся на паутинной сетке, а также насекомые, запутавшиеся в ней, способствуют созданию антисанитарных условий в жилом помещении. Поэтому не нужно забывать удалять паутину при уборке.

Более того - она обладает необычайными свойствами, которое человечество может использовать в своих целях. Учёные разных стран пытаются синтезировать вещество, подобное ей.

Практическая польза от паутины.

Каждый из нас прекрасно представляет себе паутину: неоднократно сталкивался с паутиной в лесу, а то и в своем собственном доме. Из углов паутину смахивают веником, а в лесу, случайно угодив в нее лицом, недовольно стряхивают.

Между тем, паутина - это очень интересный и полезный в практическом применении натуральный материал, огромное значение которого незаслуженно сегодня затмили многочисленные синтетические полимеры.


Тончайшие нити самой древней паутины были обнаружены в куске янтаря работниками Оксфордского университета в Восточном Сассексе. Возраст уникальной находки оценивается приблизительно в 140 млн. лет. До этого момента древнейшей считалась паутина в куске янтаря, найденном в Ливане, датированным 130-ю миллионами лет, а древнейший паук - обнаруженный в янтаре возрастом около 120 млн. лет. Янтари, сформировавшиеся более 100 млн. лет назад, встречаются крайне редко.

При помощи самых современных технологий ультрамикроскопирования ученым удалось идентифицировать древнейшую паутину, длина нитей которой была чуть больше миллиметра. Интересно, что паутина аналогична той, которую плетут современные пауки. Расположение обнаруженных нитей позволило установить, что они были опорами для круглой паутины. Тот же кусочек янтаря сохранил два мотка древней паутины.

Благодаря этой находке, исследовавшие ее палеобиологи предположили, что паукообразные на самом деле гораздо более древние существа, чем думали до этого. Ранее считалось, что широкое распространение летающих насекомых, служивших добычей для арахнид, было вызвано появлением на нашей планете цветущих растений. После изучения находки оксфордских ученых было сделано предположение о том, что древнейшие паукообразные охотились на ползающих и прыгающих насекомых, сплетая паутину на поверхности почвы.

Кроме паутины, тот же кусок янтаря сохранил обуглившиеся частички горелых коры и сока хвойного дерева. Предположительно, дерево выделило смолу, поглотившую паутину и впоследствии превратившуюся в янтарь, во время лесного пожара.

Сами пауки используют паутину для построения убежищ, выстилки норок, ловчих тенёт и яйцевого кокона; самцы делают из неё сперматическую сеточку в целях размножения. У молоди некоторых пауков длинные нити паутины служат парашютами при расселении ветром. При изготовлении ловчей сети паук сначала натягивает раму и радиальные нити, затем прокладывает временную опорную спиральную нить и лишь после этого ткёт клейкую спиральную ловчую сеть, по окончании к-рой обкусывает опорную нить.

Паутина пауков представляет собой белок, обогащённый глицином, аланином и серином. Внутри паутинной железы она существует в жидкой форме. При выделении через многочисленные прядильные трубочки, открывающиеся на поверхности паутинных бородавок, происходит изменение структуры белка, вследствие чего он затвердевает в форме тонкой нити. В дальнейшем паук переплетает эти первичные нити в более толстое паутинное волокно.

Каркасная нить паутины состоит из двух белков: более прочного спидроина-1 и более эластичного спидроина-2. Именно сочетание их свойств определяет уникальные свойства паутины.

Паутина может иметь диаметр до нескольких миллиметров и состоит из тончайших нитей. Паутина чрезвычайно тонка и легка. Чтобы опоясать экватор нашей планеты, ее потребовалось бы всего 340 г!

Ученых больше всего интересует каркасная нить паутины, необычайно прочная и эластичная. Мало кто знает о том, что нить паука по своей прочности близка к нейлону - прочность на разрыв составляет от 40 до 260 кг/мм2, что в несколько раз прочнее стали. Если бы паутина имела диаметр 1 мм, то она могла бы выдержать груз массой приблизительно 200 кг. Стальная проволока того же диаметра выдерживает существенно меньше: 30-100 кг, в зависимости от типа стали. К тому же она необычайно эластична.

Любопытно, что, когда паутина намокает, она сильно сокращается (это явление получило название суперконтракции). Это происходит потому, что молекулы воды проникают в волокно и делают неупорядоченные гидрофильные участки более подвижными. Если паутина растянулась и провисла от попадания насекомых, то во влажный или дождливый день она сокращается и при этом восстанавливает свою форму.

Другое необычное свойство паутины — внутренняя шарнирность: подвешенный на паутинном волокне предмет можно неограниченно вращать в одну и ту же сторону, и при этом она не только не перекрутится, но вообще не будет создавать заметной силы противодействия.

Как известно, натуральные нити человек добывал из природных материалов с достаточно большой изобретательностью. Впоследствии из таких нитей появились ткани - из шерсти, хлопка, льна, крапивы и даже из тончайших нитей коконов шелкопряда. Однако использование паутины открывает новые перспективы в этом направлении, т.к. представляет собой отличный материал для изготовления прочных и легких тканей.

Первая попытка изготовить такую ткань была предпринята три столетия тому назад французским ученым - энтомологом Боном, который представил в научное королевское общество свои предложения о замене привозного шелка паутинным. В качестве образца прилагались сделанные из паучьего шелка чулки и перчатки. Идея ученого не нашла поддержки по причине сложности массового разведения пауков. В нынешнее время для этой проблемы есть решение, но появление большого количества синтетических нитей резко снизило востребованность паучьего шелка.

Исключительная по прочности, легкости и красоте ткань из паутины до сих пор используется и известна в Китае под названием "ткани восточного моря". Полинезийцы употребляли паутину крупных тенетных пауков в качестве ниток для шитья и плетения рыболовных снастей. В начале XVIII века во Франции из паутины крестовиков были изготовлены перчатки и чулки, вызвавшие всеобщее восхищение. Известно, что от одного паука можно получить сразу до 500 м нити. В 1899 году из паутины крупного мадагаскарского паука пытались получить ткань для покрытия дирижабля и удалось изготовить образец роскошной ткани длиной 5 м.

На сегодняшний момент нити паутины применяются в основном в оптической промышленности для нанесения перекрестья в оптических приборах и в качестве ниток в микрохирургии, а также за счет высокого содержания в себе бактерицидных свойств может с успехом применяться в медицине в качестве шовного материала, искусственных связок и сухожилий, пленок для заживления ран, ожогов и пр.

Синтезировать подобного рода белки в лаборатории химическим путем невозможно - они слишком сложны. Однако ученым удалось создать некий искусственный аналог с применением биотехнологических технологий. Такая нить была проверена на прочность специалисты Научно-иследовательского центра "Углехимволокно" в Мытищах. Нить толщиной всего в несколько микрон выдерживает на разрыв 50-100 мг груза. Она оказалась всего лишь в четыре раза менее прочной, чем у паука, а это очень хороший результат. В то же время величина значения энергии разрыва (упругость) у этой нити уже выше, чем у кости или сухожилия.

Из паутины можно делать не только нити, но и пленки. Именно в таком виде планируется использование «искусственной паутины» для изготовления заживляющих покрытий для ран и ожогов, которые не будут отторгаться организмом и будут стимулировать регенерацию собственного эпителия.

Предпринимались попытки и получать паутину естественным путем, аналогично шелку. Были даже изобретены разные приборы для «доения» паука и аккуратного наматывания нежных нитей на медленно вращаемую катушку.

Препятствий оказалось несколько. Во-первых, неуживчивость паучьей натуры: при совместном содержании эти животные враждуют и поедают друг друга. Во-вторых, каждый паук производит очень мало паутины: подсчитано, что для производства 500 г волокна потребуется 27 тыс. пауков среднего размера. Понятно, что продуктивность членистоногих вряд ли сможет удовлетворить промышленным запросам. Выход один: научиться получать ее искусственно.

Жители островов Тихого океана «заставляют» пауков плести рыболовные сети, которые необычайно прочны и почти незаметны в воде. А на расположенном недалеко от восточного берега Африки острове Мадагаскар многие сельские жители до сих пор используют паутинки вместо ниток.

Технология, разработанная около ста лет назад французским проповедником, позволила собрать с миллиона мадагаскарских пауков золотистую паутину.

Искусствовед Саймон Пирс (Simon Peers) и его американский партнёр по бизнесу Николас Гудли (Nicholas Godley) наняли для работы несколько десятков рабочих, которые создали уникальное полотно размером 3,4 на 1,2 метра.

Поставщиками "ниток" стал миллион пауков-кругопрядов (golden orb spider), принадлежащих к роду Nephila. На изготовление куска, пожалуй, самой необычной ткани учёный и предприниматель потратили почти пять лет жизни и около $500 тысяч.

Гудли впервые приехал на Мадагаскар в 1994 году, где создал небольшую компанию по производству товаров из волокон пальмы рода Raphia. В 1999-м Николас выпустил свою первую коллекцию модных сумок (видимо, из того же материала), а в 2005-м закрыл фабрику и полностью переключился на производство "паучьей ткани" вместе с Пирсом.

На создание необычного полотна Гудли вдохновили рассказы о том, как в XIX веке нечто подобное попытался сделать французский управляющий одной из мадагаскарских провинций. Однако Николасу не было доподлинно известно, являются эти рассказы правдой или вымыслом.

Вообще-то паучий шёлк не пользуется особой популярностью у жителей Мадагаскара (оно и понятно, ведь "стандартного" тутового шелкопряда выращивать гораздо легче). Однако в XIX веке подданные королевства Мерина (Merina Kingdom) всё же решались работать с ним. Изделия из паутины преподносились членам королевских семей. Появилась даже особая традиция сплетения нитей.

Работа Пирса и Гудли началась с того, что они наняли 70 рабочих собирать близ столицы Мадагаскара Антананариву (Antananarivo) паучих вида Nephila madagascariensis.

Только женские особи создают уникальную в своём роде прочную паутину с золотистым оттенком. Сбор проходил во время сезона дождей, так как членистоногие плодят свои сети только в это время года (что накладывает дополнительные ограничения на процесс производства полотна).

Чтобы создать некое подобие прядильной фабрики, пауков поместили в специальные камеры, где их держали в неподвижном состоянии. Надо сказать, что Nephila madagascariensis не ядовитые, но кусачие. Кроме того, они могут сбежать или поесть друг друга. "Поначалу мы имели 20 женских особей, но вскорости всё заканчивалось тремя, правда, очень толстыми", - рассказывает Пирс.

Так что в конце концов беспокойных тварей изолировали друг от друга, одновременно нарастив количество одновременно обитающих на фабрике особей.

Десять рабочих собирали паутину, свисающую из прядильных органов паучих. С одной особи таким образом можно было получить около 25 метров драгоценного материала.

Пирс отмечает, что четырнадцать тысяч пауков дают примерно 28 граммов паучьего шёлка, а общий вес конечного куска ткани составил аж 1180 граммов!

Далее для создания первичной нити ткачи вручную скручивали 24 отрезка паутины в один, четыре первичных затем превращали в одну основную нить (итого 96 отрезков), и только из неё ткали полотно. Можно представить, насколько кропотливой должна быть работа.

Материал из паутины пригодится на поле боя, в хирургии и даже в космосе, уверены многие специалисты. В получении изделий из белков паутины заинтересованы в Институте биоорганической химии РАН, а также в Институте трансплантологии и искусственных органов.

В народной медицине есть такой рецепт: на рану или ссадину, чтобы остановить кровь, можно приложить паутину, аккуратно очистив ее от застрявших в ней насекомых и мелких веточек. Оказывается, паутина обладает кровеостанавливающим действием и ускоряет заживление поврежденной кожи. Хирурги и трансплантологи могли бы использовать ее в качестве материала для наложения швов, укрепления имплантантов и даже как заготовки для искусственных органов. С помощью паутины можно существенно улучшить механические свойства множества материалов, которые в настоящее время применяются в медицине.

В разных странах биотехнологические компании научились изготавливать искусственные аналоги паутины, но до совершенства природного полимера им еще далеко. Достичь его можно только разобравшись, какие из физических или химических особенностей строения отвечают за уникальные механические свойства паутины, и успех в решении прикладной задачи напрямую зависит от результатов фундаментальных исследований.

С 2007 г. к этой работе подключилась группа исследователей кафедры биоинженерии биологического факультета МГУ им. М.В. Ломоносова под руководством доктора физико-математических наук, профессора К.В.Шайтана , и результаты их исследований приоткрыли завесу над некоторыми тайнами этого природного полимера.

Но, при чём здесь биотехнология ? Может быть, паутину можно получать естественным путем, подобно шелку? Ведь объемы производства шелковых нитей из коконов, сплетенных гусеницами тутового шелкопряда, весьма значительны. Такие попытки действительно предпринимали, были даже изобретены разные приборы для «доения» паука и аккуратного наматывания нежных нитей на медленно вращаемую катушку (Дебабов, Богуш, 1999; Work and Emerson, 1982).

Препятствий оказалось несколько. Во-первых, неуживчивость паучьей натуры: при совместном содержании эти животные враждуют и поедают друг друга . Во-вторых, каждый паук производит очень мало паутины: подсчитано, что для производства 500 г волокна потребуется 27 тыс. пауков среднего размера. Понятно, что продуктивность членистоногих вряд ли сможет удовлетворить промышленным запросам. Выход один: научиться получать ее искусственно.

90-е годы минувшего века и начало нынешнего ознаменовались нарастающим потоком исследований свойств и структуры паутины. Особенно большой интерес проявили в Великобритании, Германии, США и Японии. Было выяснено, что паутина имеет белковую природу, сходную с шелком. У пауков есть несколько типов паутинных желез и разные варианты паутины:

  • одна — для строительства коконов, куда самки откладывают яйца,
  • другая — для парашютирования, если приходится спасаться бегством,
  • клейкая — для строительства ловчей части паутины,
  • каркасная — на которую она накладывается.

Самая прочная паутина — каркасная , и она изучена лучше других. В ней преобладают два белка, получившие название спидроинов (от английского spider — паук). Они очень длинные — в состав каждого входит 2.5-3 тыс. аминокислотных остатков.

Один из белков каркасной паутины паука-кругопряда Nephila clavipes , широко распространенного на юге США, с ловчей сетью до метра в диаметре, получил название спидроин-1 , другой — спидроин-2 . Первый немного короче второго: молекулярный вес спидроина-1 — 275 тыс. атомных единиц массы, спидроина-2 — 320.

У разных видов пауков эти белки несколько отличаются как размером — от 180 до 720 тыс. а.е.м., так и последовательностью аминокислот, но у всех есть общая особенность — повторение одинаковых или почти одинаковых аминокислотных последовательностей, включающих участок из нескольких подряд остатков аланина (обычно их от четырех до девяти) и участок с частым повторением остатков глицина.

Физико-химические свойства белков определяются особенностями аминокислотных последовательностей, и спидроины — не исключение. Уникальное свойство спидроинов — чередование отрезков, богатых глицином и аланином. Оно-то и определяет, как молекула свернута в пространстве, как несколько молекул складываются в волокно-фибриллу и упорядоченную упаковку таких фибрилл в нанофибриллах паутинного волокна, а, кроме того, на концах молекул есть особые группы из нескольких десятков аминокислот с гидрофильными свойствами.

Благодаря значительным силам, брошенным на изучение всех этих уровней пространственной организации белков паутины, многое стало понятным, хотя полной ясности пока нет.

Первый, главный вопрос: за счет чего достигаются замечательные механические свойства паутины ?

Исследования с применением рентгеноструктурного анализа (Warwicker, 1960; Glisovic and Salditt, 2007) показали, что в секрете паутинной железы нити нескольких белковых молекул образуют множество плотных упаковок размером 2×5×7 нм. Полагают, что это — вплотную сближенные аланиновые участки. Такие структуры называют β-слоями. Многие исследователи паучьего шелка полагают, что своей прочностью паутина обязана именно им, а фрагменты, богатые глицином, свертываются в спирали и обеспечивают эластичность (Simmons et al., 1994; Parkhe et al., 1997, van Beek et. al, 2002 и др.).

Чтобы еще лучше понять процессы, происходящие на молекулярном уровне, биологи из Московского университета обратились к компьютерному моделированию . Оно позволяет в численном эксперименте на основе данных о строении молекул и об энергии межатомных взаимодействий определять такие свойства молекул, как растяжимость и пределы прочности на разрыв, наблюдать, как молекулы взаимодействуют между собой — в натурном эксперименте это крайне сложно, если вообще достижимо. Численные эксперименты проводились с использованием суперкомпьютерных технологий.

« На примере пептидов паутинного волокна нам удалось показать, что стабильность вторичной структуры зависит не только от аминокислотной последовательности, но и от молекулярного окружения, — утверждает автор исследования И.Оршанский . — Комплексы из нескольких пептидов обладают более устойчивой вторичной структурой как в случае полиаланиновых пептидов, так и в случае межаланиновых пептидов».

И все же остается загадкой: что заставляет жидкий секрет превращаться в чудесную прочную нить — твердую и нерастворимую ?

Если бы это удалось узнать во всех подробностях, появился бы ключ к воспроизведению этого процесса, а значит — к искусственному получению нити с такими же качествами. К тому же у паука это получается стремительно, а значит, можно достигнуть высокой производительности.

Теперь уже известно (Scheibel et al., 2009), что в процессе «созревания» паутины перед выходом из паучьей железы раствор спидроинов претерпевает множество изменений: ткани паука извлекают из него воду, из-за чего концентрация белков повышается, из окружающего их раствора извлекаются ионы натрия и хлора, зато возрастает содержание калия, фосфат-ионов и водорода, при этом реакция среды понижается от 6.9 до 6.3 и становится несколько более кислой.

В результате всех этих и других, неучтенных пока, процессов белок быстро меняет конфигурацию. И, что самое замечательное, это происходит при обычной температуре и давлении и без применения ядовитых реагентов, какие, к примеру, приходится применять при производстве других синтетических полимеров, в частности, кевлара, и без токсичных отходов. Известно также, что натяжение выделяемой нити влияет на ее прочность: если свежую нить растягивать с силой, то паутина получается тоньше и прочнее.

На сегодняшний день в получении искусственной паутины достигнуты некоторые успехи. Вначале 90-х гг. американские исследователи клонировали в клетках Escherichia coli гены спидроинов, составляющих нить основы паука Nephila clavipes. Появилась возможность, используя генно-инженерные методики, встраивать фрагменты генов спидроинов в геномы других организмов и выделять из них белок, синтезированный in vivo .

Для подобных целей часто используют все ту же бактерию Echerichia coli, но для спидроинов такая технология не подходит: для бактерий их молекулы слишком велики, поэтому биотехнологи обратили свои взоры к более крупным организмам.

В Германии сумели имплантировать гены кругопряда в геномы картофеля и табака, и выход спидроина составил до 2% всей белковой массы этих растений.

В Японском университете Шинсу вставили спидроиновый ген в геном тутового шелкопряда Bombyx mori, теперь их гусеницы производят волокно, на 10 % состоящее из белков паутины.

Канадская биотехнологическая фирма Nexia сообщила об успешном внедрении гена спидроина сначала хомячкам, а потом — козам, в результате белки можно выделять из их молока, хотя и в очень небольших количествах. Но чаще всего, в т.ч. в российских биотехнологических лабораториях, для этих целей используют дрожжи — Pichia pastoris, окисляющие метан, и пивные — Saccharomices cerevisiae.

В России признанный лидер по производству искусственных спидроинов — Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов (ГосНИИгенетика). С 2001 г. научная группа под руководством академика Российской академии сельскохозяйственных наук, члена-корреспондента РАН профессора В.Г.Дебабова отрабатывает методы производства рекомбинантных спидроинов.

Из известной нуклеотидной последовательности к-ДНК паука-кругопряда Nephila clavipes биотехнологи выбрали несколько типичных участков, синтезировали соответствующие гены и встроили в геном дрожжей. Раствор, приготовленный из выделенного белка, «прядут», выпуская через тончайшее отверстие в концентрированный этиловый спирт, где он превращается в волокно.

Их коллега из Института биоорганической химии РАН Д.В.Клинов разработал способ получения из раствора пленок разной толщины путем электро-распыления. Регулируя содержание белка в исходном растворе и концентрацию спирта, и изменяя ход последующей обработки, которая включает вытягивание в спирте, размачивание в воде и горячую сушку, исследователи пытаются подобрать условия для создания наиболее прочного и эластичного волокна.

Работа с искусственной паутиной имеет не только прикладной, но и фундаментальный научный смысл.

« Эта проблема находится на стыке биологии, белковой инженерии и материаловедения, — считает профессор кафедры биоинженерии биофака МГУ К.В. Шайтан. — Понимание того, как аминокислотная последовательность влияет на свойства нановолокна, откроет путь к искусственному созданию нанофибрилл с заданными возможностями».

Специалисты с кафедры биоинженерии биологического факультета МГУ совместно с коллегами из ГосНИИгенетики и Института трансплантологии и искусственных органов Минздравсоцразвития РФ изучают свойства нити на разных этапах ее обработки, чтобы разгадать загадки ее вторичной, третичной и четвертичной структуры (Bougush et al., 2008).

Рассматривая поверхность и разломы свежей искусственной нити, еще не подвергнутой обработке, — своего рода аналога зрелого прядильного раствора в паутинной железе — под электронным сканирующим микроскопом они обнаружили, что нить на самом деле представляет собой полую трубку из губчатого материала, испещренного множеством сферических отверстий диаметром 0.15-1 мкм, а в толще твердого материала встречаются такой же величины белковые глобулы. Более мелкие глобулы размером 50-250 нм встречаются на поверхности нитей при некоторых вариантах обработки.

Ученые обратили внимание на то, что образования такой же формы и размера встречаются и в прядильном растворе пауков — может быть, это и есть те самые мицеллы , на которых строится гипотеза американцев? Но ведь фрагменты спидроинов, синтезируемые в ГосНИИгенетике, лишены специфических концевых фрагментов, характерных для природных спидроинов! Значит, способ упаковки молекул в мицеллы другой, чем предполагался в существующих гипотезах.

Если нить из рекомбинантного спидроина, прежде чем вынуть из спирта, растянуть — это рассматривается как аналогия прядения пауком естественной паутины — то структура ее изменится: появляются тонкие фибриллы диаметром 200-900 нм, их можно увидеть с помощью атомно-силового микроскопа. В природной паутине тоже есть микрофибриллы , правда, они в десять раз тоньше.

При более пристальном рассмотрении, тонкие фибриллы оказались больше похожими на бусы: в них чередуются утолщения и более тонкие участки. Под трансмиссионным электронным микроскопом, позволяющим рассмотреть объект на просвет и при большем увеличении, внутри микрофибрилл обнаружены включения диаметром 10-15 нм, которые группируются в продольные структуры длиной до 250 нм. Есть основания полагать, что это кластеры из тех самых нанофибрилл , которые обеспечивают уникальные механические свойства натуральной паутины.

Е. Краснова, кандидат биологических наук

В XVIII веке некто Бон из Монпелье связал себе пару чулок и перчаток из паутины. Этот опыт использования паутинной нити для текстильных целей оказался единственным. В настоящее время паутина применяется лишь в качестве перекрестий точных оптических приборов.

Паутина синтезируется из аминокислот в крови паука. Происходит это в клетках, находящихся в стенках паутинных желез. Паутина производится капельками; они сливаются в пустотелой центральной части железы. Эта вязкая жидкость фактически представляет собой концентрированный раствор паутины. Раствор накапливается в железах до тех пор, пока у паука не появится потребность в паутине и она не потянется из протоков паутинных бородавок. Паутина быстро вытягивается в тонкую нить и сразу же переходит из вязкого состояния в твердое.

Вещества, которые могут быть вытянуты в нити,- обычно высокомолекулярные полимеры. Состоят они из длинных тонких молекул. Молекулы скручены, когда находятся в растворе. Однако, если они вытянуты из тонкого отверстия, они разворачиваются и располагаются по всей длине волокна. Молекулы удерживаются в этом положении поперечными связями, которые образуются между соседними цепями.

Передвигаясь, паук обычно плетет двойную нить - так называемую висячую. Она удерживает его от падения и прикрепляется с помощью присоединительных дисков всякий раз, когда паук должен опуститься.

Висячая нить иногда усиливается двумя более тонкими нитями. Они используются и для изготовления наружного каркаса и радиальных нитей ловчей сети. Другая основная часть ловчей сети - спиральная нить; она фактически и захватывает попадающих на нее мух.

Вся сеть очень липка и чрезвычайно эластична. Липкость ей придает множество капелек очень вязкого вещества, которое покрывает обе паутинки и удерживает их вместе. При малейшем соприкосновении с вязкой нитью муха прилипает. Нить может растягиваться, не разрываясь, как бы сильна ни была жертва. Обычно это приводит к тому, что муха запутывается и в соседних липких нитях. Удерживая муху, паук челюстями, ногощу-пальцами и передними лапками вращает ее, в то время, как задние его лапки вытягивают паутину из паутинных бородавок. Муха оказывается, таким образом, в паутинном «бинте», и паук часто уносит жертву в свое убежище, где ее ждет участь либо быть съеденной сразу, либо быть подвешенной «про запас».

Имеется и еще одна паутина; она используется для изготовления кокона. Этой нитью паук обволакивает яйца, откладываемые осенью. Кокон защищает яйца от непогоды и посягательств различных хищников.

Паутина состоит из белков. Белки, как известно, играют важнейшую роль в строении и работе всех живых организмов. Из них состоит миозин в мускулах, коллаген в соединительных тканях, гемоглобин в крови, а также ферменты, которые управляют всеми химическими реакциями в живом организме.

Белки - крупные молекулы, построенные из двадцати различных аминокислот. Молекула белка паутины может состоять из одной или нескольких цепей, связанных в одном или нескольких местах. Прочные поперечные связи образованы аминокислотой цистином, может «цепляться» к двум различным цепям. Цистин может также образовать связь между различными частями одной и той же цепи, образуя петли.

Двадцать аминокислот могут образовать огромное количество различных белков. Одна из основных целей, к которой стремятся химики, занимающиеся белками, - установить количество аминокислот в белке и их взаиморасположение.

Для определения аминокислотного состава разлагают на составляющие его аминокислоты кипячением в соляной кислоте. Затем из смеси аминокислот выделяют все компоненты. Двадцать пять лет тому назад это было довольно сложной процедурой, требовавшей большого количества материала и времени и к тому же не всегда дававшей точные результаты. В настоящее время полный анализ аминокислот может быть осуществлен на нескольких миллиграммах материала за один день. Ученые создали аппарат, в котором смесь аминокислот сначала разлагается на компоненты, а затем количество их автоматически регистрируется и записывается в виде графиков.

Эти аналитические методы применены при анализе ряда паутин. Существует большая разница в составах нити кокона и висячей нити. Основные аминокислоты первой - аланин и серин, второй - глицин и аланин. Более чем наполовину белок в каждом случае образован лишь двумя аминокислотами, хотя в них присутствуют и многие другие аминокислоты. Больше всего в паутине аминокислот с очень короткими боковыми цепями.

Знать, как располагаются аминокислоты в белке, очень важно. Но это еще не дает возможности объяснить все свойства волокон. Эти свойства зависят в значительной степени от того, как цепи расположены относительно друг друга.

В 1913 году отец и сын Брэгги показали, что кристалл любого вещества, вращаемый в рентгеновских лучах, отражает их под некоторыми определенными углами, так как он состоит из упорядочено расположенных атомов, которые образуют плоскости отражения. В том же году два японца - Никишава и Оно - установили, что многие волокна, которые, как предполагалось, не имели кристаллической структуры, тоже дают определенные отражения.

Существующие рентгенограммы паутинных нитей выглядят невыразительно, если сравнивать их с рентген граммами истинных кристаллов, однако они могут дать значительную информацию о структуре паутины. Тот факт, что такая рентгенограмма содержит пятна, свидетельствует о наличии в волокнах паутины кристаллических участков, имеющих упорядоченное расположение атомов. Заслуга определения структуры этих кристаллических участков принадлежит прежде всего профессору Лайнусу Полингу из Калифорнийского технологического института и профессору Уорвиккеру.

Благодаря этим исследованиям мы знаем, что почти у всех видов паутины похожая структура. Примерное представление о ней можно получить, начертив несколько равноотстоящих параллельных линий на листке бумаги, а затем собрав в складки этот лист под прямыми углами к линиям. Линии представляют собой длинные пептидные цепи, а места, где они пересекаются со складками, обозначают положения атомов углерода, от которых отходят боковые цепи. Они идут под прямыми углами к плоскости листа.

А теперь рассмотрим какое-то количество аналогичных листов, сложенных вместе; плотность их «упаковки» будет зависеть от размеров И-групп. Почти все паутины имеют цепи, расположенные аналогичным образом в пределах листов, и отличаются лишь расстоянием между листами: оно колеблется от 3,3 до 15,6 ангстрем.

Нить паутины под - это длинные правильные цилиндры с почти правильным круговым поперечным сечением. Один способ сравнения тонкости волокон - указать вес определенной длины волокна. Для паутины он обычно выражается в денье - весе в граммах 9 километров нити. В этой системе измерения нить шелковичного червя весит 1 денье, в то время как человеческий волос - 40-50 денье. Вес нити кокона паука - 0,7 денье, а висячей нити - еще меньше, 0,07 денье. Висячая нить, обвившая земной шар по экватору, весила бы лишь около 340 граммов.

Прочность и растяжимость нитей имеют важное значение для текстильной промышленности. Чтобы сравнить нити различной толщины, их крепость обычно выражают через прочность на разрыв, то есть через разрывную нагрузку, деленную на денье. Разрывная прочность, таким образом, выражается в граммах на денье. Средняя разрывная прочность нитей кокона составляет 2,2 г/денье, а висячей нити-7,8 г/денье. Удлинение к моменту разрыва достигает соответственно 46% и 31%.

В отличие от висячей нити, нить кокона сравнительно непрочна, и это объясняется ее назначением. Она и не должна выдерживать большие напряжения, ее задача - создавать защитную оболочку для яиц кокона. Для этого паук плетет шестислойную пряжу из вьющейся нити. Каждая нить кокона состоит из шести паутинок. Эта паутинная оболочка напоминает объемную пряжу, которая была разработана в последние годы для изготовления эластичного трикотажа из искусственных волокон.

Спиральная нить ловчей сети, которая образует липкую паутинную ловушку, очень эластична. Ее растяжение и сжатие полностью обратимы, и в этом отношении она напоминает резину.

Одна из задач промышленности искусственных материалов заключается в том, чтобы поставлять покупателям материалы с определенными свойствами. Ткань для нижнего белья, например, должна сохранять тепло и поглощать влагу, а для корда покрышек необходима очень прочная ткань.

Разработка искусственных белковых волокон находится еще в зачаточном состоянии, поскольку мы пока еще не можем создать длинные цепи со сложной аминокислотной структурой. Можно, однако, взять одну аминокислоту и полимеризовать ее в длинные цепи, например, в полиаланин или пол и метил глютамаг, получив из них хорошие ткани. Можно также получить высокомолекулярные полимеры с повторяющейся дипептидной последовательностью, например, …глицин - аланин - глицин - аланин - глицин-аланин…

Дальнейшее изучение различных видов паутины - вот тот путь, который наверняка поможет нам в создании искусственных белковых волокон.

P. S. О чем еще говорят британские ученые: о том, что в будущем на основе более детального, молекулярного изучения, как паутинной нити, так и других природных материалов ученные смогут получить различные ультраполезные вещи для нашего быта, к примеру, сверхпрочные
жби изделия , сделанные из специальных полимеров или еще что-то в таком роде.

Пауки принадлежат к древнейшим обитателям Земли: следы первых паукообразных найдены в породах, которым 340–450 млн лет. Пауки примерно на 200–300 млн лет старше динозавров и более чем на 400 млн лет – первых млекопитающих. У природы было достаточно времени, чтобы не только умножить число паучьих видов (их известно около 60 тыс.), но и вооружить многих этих восьминогих хищников удивительным средством охоты – паутиной. Рисунок паутины может быть различным не только у разных видов, но и у одного паука в присутствии тех или иных химических веществ, например взрывчатых или наркотических. Пауков даже собирались запустить в космос для исследования влияния микрогравитации на рисунок паутины. Однако больше всего загадок таило вещество, из которого состоит паутина.

Паутина, как наши волосы, шерсть животных, нити шелковичных червей, состоит в основном из белков. Но полипептидные цепи в каждой паутинной нити переплетены столь необычным образом, что обрели почти рекордную прочность. Одиночная нить, производимая пауком, столь же прочна, как стальная проволока равного диаметра. Канат, сплетенный из паутины, толщиной всего примерно с карандаш, мог бы удержать на месте бульдозер, танк и даже такой мощный аэробус, как «Боинг-747». Но плотность стали в шесть раз больше, чем паутины.

Известно, сколь высока прочность шелковых нитей. Классическим примером служит наблюдение, сделанное аризонским врачом еще в 1881 г. На глазах этого врача произошла перестрелка, в которой один из стрелявших был убит. Две пули попали в грудь и прошли навылет. При этом с обратной стороны каждой раны торчали кусочки шелкового носового платка. Пули прошли сквозь одежду, мышцы и кости, но не смогли разорвать попавшегося им на пути шелка.

Почему же в технике применяют стальные конструкции, а не более легкие и эластичные – из материала, подобного паутине? Почему шелковые парашюты не заменяют этим же материалом? Ответ прост: попробуйте-ка сделать такой материал, какой ежедневно легко производят пауки, – не получится!

Ученые разных стран мира долго изучали химический состав паутины восьминогих ткачей, и сегодня картина ее строения раскрыта более или менее полно. Нить паутины имеет внутреннее ядро из белка, называемого фиброином, и окружающие это ядро концентрические слои гликопротеидных нановолокон. Фиброин составляет примерно 2/3 массы паутины (а также, кстати, и натурального шелкового волокна). Это вязкая, сиропообразная жидкость, полимеризующаяся и затвердевающая на воздухе.

Гликопротеидные волоконца, диаметр которых может составлять всего несколько нанометров, могут располагаться параллельно оси фиброиновой нити или образовывать спирали вокруг нити. Гликопротеиды – сложные белки, которые содержат углеводы и имеют молекулярную массу от 15 000 до 1 000 000 а.е.м, – присутствуют не только у пауков, но и во всех тканях животных, растений и в микроорганизмах (некоторые белки плазмы крови, мышечных тканей, оболочек клеток и др.).

При образовании паутины гликопротеидные волоконца соединяются между собой за счет водородных связей, а также связей между СО- и NН-группами, причем значительная доля связей образуется в паутинных железах паукообразных. Молекулы гликопротеидов могут образовывать жидкие кристаллы со стержневидными фрагментами, которые укладываются параллельно друг другу, что придает структуре прочность твердого тела при сохранении способности течь подобно жидкости.

Основные составные части паутины - простейшие аминокислоты: глицин Н 2 NCН 2 СООН и аланин СН 3 СHNН 2 CООН. В паутине содержатся и неорганические вещества – гидрофосфат калия и нитрат калия. Их функции сводятся к защите паутины от грибков и бактерий и, вероятно, созданию условий для образования самой нити в железах.

Отличительная особенность паутины - экологичность. Она состоит из легко усваиваемых природной средой веществ и не вредит этой среде. В этом отношении паутина пока не имеет аналогов, созданных руками человека.

Паук может выделять до семи разных по строению и свойствам нитей: одни – для ловчих «сетей», другие – для собственного перемещения, третьи – для сигнализации и т. д. Почти все эти нити могли бы найти широкое применение в промышленности и быту, если бы удалось наладить их широкое производство. Однако «приручить» пауков, как тутовых шелкопрядов, организовать своеобразные паучьи фермы вряд ли возможно: агрессивные привычки пауков и черты единоличника в их характере вряд ли позволят это сделать. А для производства всего 1 м ткани из паутины требуется «работа» более 400 пауков.

Можно ли воспроизвести химические процессы, проходящие в теле пауков, и скопировать природный материал? Ученые и инженеры уже довольно давно разработали технологию кевлара – арамидного волокна:

получаемого в промышленных масштабах и приближающегося по свойствам к паутине. Волокна из кевлара в пять раз слабее паутины, но все же настолько прочны, что их используют для изготовления легких пуленепробиваемых жилетов, защитных шлемов, перчаток, канатов и др. Но кевлар получают в среде горячих растворов серной кислоты, в то время как пауку требуется обычная температура. Химики пока не знают, как приблизиться к таким условиям.

Однако к решению материаловедческой проблемы приблизились биохимики. Сначала были выявлены и расшифрованы паучьи гены, программирующие образование нитей того или иного строения. Сегодня это касается пауков 14 видов. Затем американские специалисты из нескольких исследовательских центров (каждая группа самостоятельно) ввели эти гены бактериям, пытаясь получить нужные белки в растворе.

Ученые канадской биотехнологической фирмы «Нексиа» ввели такие гены мышам, затем перешли на коз, и козы стали давать молоко с тем самым белком, который образует нить паутины. Летом 1999 г. двух африканских карликовых козлов, Петера и Уэбстера, генетически запрограммировали давать потомство коз, молоко которых содержало такой белок. Эта порода хороша тем, что потомство становится взрослым уже в трехмесячном возрасте. Фирма пока хранит молчание, как делать нити из молока, но уже зарегистрировала название созданного ею нового материала – «BioSteel» («биосталь»). Статья о свойствах «биостали» опубликована в журнале «Science» («Наука», 2002, т. 295, с. 427).

Другим путем пошли немецкие специалисты из Гатерслебена: они ввели гены, подобные паучьим, в растения – картофель и табак. Им удалось получить в картофельных клубнях и табачных листьях до 2% растворимых белков, состоящих в основном из спидроина (главного фиброина пауков). Предполагается, что, когда количества производимого спидроина станут значительными, из него в первую очередь будут делать медицинские бинты.

Молоко, полученное от генетически измененных коз, вряд ли можно отличить по вкусу от натурального. Генетически модифицированный картофель похож на обычный: его в принципе тоже можно варить и жарить.