Ламповый усилитель без анодного трансформатора. Преобразователь напряжения повышающий без трансформатора 12 вольт из 220 без трансформатора

Обзор схем бестрансформаторных источников питания (10+)

Бестрансформаторные источники питания - Понижающие

При проектировании малогабаритных устройств применение трансформаторов иногда является нежелательным. Кроме того при росте мировых цен на сырье (медь и железо) стоимость трансформаторов постоянно растет, в то время как стоимость других радиоэлектронных компонентов в целом снижается. В этой ситуации становится актуальным применение импульсных источников питания, в которых трансформаторы имеют небольшой размер и вес, а значит, небольшую стоимость, или проектирование бестрансформаторных источников питания и преобразователей напряжения. Мы планируем цикл статей о проектировании импульсных устройств, подпишитесь на новости , если эта тема Вам интересна. Сейчас остановимся на бестрансформаторных решениях.

У всех таких схем имеется общий недостаток - отсутствие гальванической развязки с высоковольтными шинами питания. Так что пользователи проектируемых устройств должны быть конструктивно защищены от любого контакта с элементами схемы, должна быть предусмотрена защита от влаги, попадания посторонних предметов. К схемам с бестрансформаторным питанием предъявляются такие же требования по безопасности, как и к высоковольтным схемам. Потенциал некоторых цепей относительно земли у них может быть равен потенциалу сетевого напряжения, даже если внутри самой схемы напряжение не превышает десятков вольт.

Бестрансформаторное питание обычно применяется в схемах автоматики и схемах формирования импульсов для преобразователей напряжения. В этих случаях гальваническую развязку обеспечить все равно невозможно, так как управляющие импульсы должны подаваться непосредственно на силовые элементы, находящиеся под сетевым напряжением.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не
Схема импульсного источника питания ярких светодиодов....


Принцип работы, самостоятельное изготовление и наладка импульсного силового прео...


Ремонт импульсного источника питания. Отремонтировать блок питания или преобразо...


Как работает повышающий стабилизированный преобразователь напряжения. Где он при...


Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов
Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:

  • На какие выводы подавать сетевое питание (230 вольт)?
  • С каких выводов снимать пониженное напряжение?
  • Каким оно будет (12 вольт, 24 или другим)?
  • Какую мощность сможет выдать трансформатор?
  • Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?
  • Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
    Для выполнения работы понадобятся простейшие инструменты и расходные материалы:

    • мультиметр с функциями омметра и вольтметра;
    • паяльник;
    • изолента или термоусадочная трубка;
    • сетевая вилка с проводом;
    • пара обычных проводов;
    • лампа накаливания;
    • штангенциркуль;
    • калькулятор.


    Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.
    Определение первичной и вторичной обмоток
    Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
    Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.


    Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
    Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.


    Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
    В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
    На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
    Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
    Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.
    Определение напряжения вторичной обмотки
    Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.


    Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
    Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
    Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
    Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.


    Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.


    Простые способы вычисления мощности силового трансформатора
    С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
    Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
    Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
    Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
    Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.


    Заключение
    Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.

    Вам может понравиться:

    • Вязаные коврики крючком: интересные модели, схемы и…
    • Идеи для подушек из старых свитеров… Никогда бы не…
    • Советы, которые будут полезны и начинающим, и…

    Является простым повышающим преобразователем, построенным на м/с NE555, которая выполняет здесь функцию генератора импульсов. Выходное напряжение может варьироваться в пределах 110-220В (регулируется потенциометром).

    Область применения

    Преобразователь идеально подходит для питания ламп часов Nixie или маломощных или усилителей к наушникам, заменив собой классический источник питания высокого напряжения на трансформаторах. Целью создания этого устройства был проект часов на вакуумных индикаторах в котором схема работает как источник питания высокого напряжения. Преобразователь при питании 9 В и потребляет ток порядка 120 мА (при 10 мА нагрузке).

    Принцип работы схемы

    Как видите, это стандартный преобразователь напряжения повышающего типа. Частота на выходе микросхемы U1 (NE555) определяется номиналами элементов R1 (56k), R3 (10k), С2 (2,2 nF), и составляет около 45 кГц. Выход с генератора непосредственно управляет mosfet транзистором Т1, который переключает ток, протекающий через катушку L1. Во время нормальной работы катушка L1 периодически накапливает и отдает энергию, увеличивая выходное напряжение.

    Схема инвертора на 555

    Когда транзистор T1 (IRF740) открывается и подаёт на катушку L1 (100 мкГн) питание (ток течет от источника питания к массе — это первый этап. На втором этапе, когда транзистор будет отключен — ток через катушку в соответствии с законом коммутации вызывает увеличение напряжения на аноде диода D1 (BA159) до тех пор, пока он не будет поляризован в направлении проводимости. Происходит разряд катушки в конденсатор C4 (2,2 мкф). Таким образом, напряжение на C4 растет до тех пор, пока напряжение на выходе делителя R5 (220k), P1 (1к) и R6 470R не вырастет до значения около 0,7 В. Это приведет к включению транзистора T2 (BC547) и отключению генератора 555. Когда напряжение на выходе упадет — транзистор Т2 будет закрыт и генератор снова включается. Так выходное напряжение преобразователя регулируется по величине.


    Готовая плата для пайки

    Конденсатор C1 (470uF) фильтрует напряжение питания схемы. Регулировка выходного напряжения выполняется с помощью потенциометра P1.

    Сборка бестрансформаторного преобразователя


    Собранный преобразователь 9-150 вольт

    Преобразователь можно спаять на печатной плате. Рисунок PDF платы, в том числе в зеркальном отображении и расположение деталей — . Монтаж прост и пайка элементов произвольная. Под микросхему U1 имеет смысл использовать панельку. Устройство следует питать напряжением 9В.

    Трансформатор – устройство для передачи энергии из одной цепи в другую посредством электрической индукции. Он предназначен для преобразования величин токов и напряжений, для гальванического разделения электрических цепей, для преобразования сопротивлений по величине и для других целей.

    Трансформатор может состоять из двух и более обмоток. Мы будем рассматривать трансформатор из двух разделенных обмоток без ферромагнитного сердечника (воздушный трансформатор), схема которого представлена на рис. 5.12.

    Обмотка с зажимами 1-1’, присоединенная к источнику питания, – первичная, обмотка, к которой подключается сопротивление нагрузки , – вторичная. Сопротивление первичной обмотки , сопротивление вторичной – .

    Уравнения трансформатора при принятой полярности катушек и направлении токов имеют вид:

    - для первичной обмотки

    Для вторичной обмотки

    Входное сопротивление трансформатора

    Обозначим активное сопротивление вторичной цепи

    тогда уравнения можно переписать

    (5.22)

    Входное сопротивление трансформатора . Учитывая, что и подставляя в первое уравнение (5.21), получим, что

    Таким образом, входное сопротивление трансформатора со стороны первичных зажимов состоит из двух слагаемых: – сопротивление первичной обмотки без учета взаимоиндукции, , которое появляется за счет явления взаимоиндукции. Сопротивление как бы добавляется (вносится) из вторичной катушки и поэтому называется вносимым сопротивлением.


    Входное сопротивление идеального трансформатора.

    Идеальным трансформатором (теоретическое понятие) называют такой трансформатор, в котором выполняются условия

    (5.24)

    При этом С определенной погрешностью такие условия можно выполнить в трансформаторе с сердечником с высокой магнитной проницаемостью, на который намотаны провода с малым активным сопротивлением.

    Входное сопротивление этого трансформатора

    (5.25)

    Следовательно, идеальный трансформатор, включенный между нагрузкой и источником энергии, изменяет сопротивление нагрузки пропорционально квадрату коэффициента трансформации n.

    Свойство трансформа­тора преобразовывать вели­чины сопротивлений широко используется в различных об­ластях электротехники, связи, радиотехники, автоматики и прежде всего с целью согласо­вания сопротивлений источ­ника и нагрузки.


    Схема замещения трансформатора

    Схема двухобмоточного трансформатора без ферромагнитного сердечника может быть изображена так, как это представлено на рис. 5.14. Токораспределение в ней такое же, что и в схеме на рис. 5.12 без общей точки между обмотками.

    Произведем в схеме на рис. 5.14 развязку индуктивных связей. При этом получим схему замещения трансформатора (рис. 5.15), в которой отсутствуют магнитные связи.

    Энергетические процессы в индуктивно связанных катушках

    Дифференциальные уравнения воздушного трансформатора (рис. 5.15):

    (5.25)

    Умножим первое уравнение на , а второе – на :

    (5.26)

    Сложив эти уравнения, получим суммарную мгновенную мощность, которая потребляется от источника и расходуется в первичной и в вторичной обмотках трансформатора и в нагрузке

    (5.27)

    где – мгновенная мощность на нагрузке, ;

    – мгновенная мощность, расходуемая на тепло в обмотках трансформатора, ;

    – энергия магнитного поля обмоток трансформатора, .


    Трехфазные генераторы.

    Под трехфазной цепью (системой) понимают совокупность трехфазного источника (генератора), нагрузки и соединительных проводов.

    Известно, что при вращении проводника в равномерном магнитном поле в нем наводится ЭДС

    . (1.1)

    Закрепим жестко на одной оси три одинаковые катушки (обмотки), смещенные относительно друг друга в пространстве на (120°) и начнем их вращать в равномерном магнитном поле с угловой скоростью w (рис. 1.1).

    При этом в катушке A будет наводиться

    Такие же значения ЭДС возникнут в катушках B и C, но соответственно через 120° и 240° после начала вращения, т.е.

    (1.3)

    Совокупность трех катушек (обмоток), вращающихся на одной оси с угловой скоростью w, в которых наводятся ЭДС, равные по модулю и сдвинутые друг от друга на угол 120° называют симметричным трехфазным генератором. Каждая катушка генератора – это фаза генератора. В генераторе на рис. 1.1 фаза B «следует» за фазой A, фаза C – за фазой B. Такая последовательность чередования фаз называется прямой последовательностью. При изменении направления вращения генератора будет иметь место обратная последовательность чередования фаз. Прямой последовательности на основании соотношений (1.2, 1.3) соответствует векторная диаграмма ЭДС, изображенная на рис. 1.2, а, для обратной – векторная диаграмма ЭДС на рис. 1.2, б.

    В дальнейшем все рассуждения по расчету трехфазных цепей будут касаться только трехфазных систем с прямой последовательностью следования генераторных ЭДС.


    График изменения мгновенных значений ЭДС при y = 90° представлен на рис. 1.3. В каждое мгновение алгебраическая сумма ЭДС равна нулю.

    Крайним точкам катушек (обмоток) дают название конец и начало. Начала катушек обозначают A, B, C, концы соответственно X, Y, Z (рис. 1.4, а).

    Фазные обмотки трехфазного генератора могут быть изображены в виде источников ЭДС (рис. 1.4, б).

    В данной статье поговорим про бестрансформаторное электропитание.

    В радиолюбительской практике, да и в промышленной аппаратуре источником электрического тока обычно являются гальванические элементы, аккумуляторы, или промышленная сеть 220 вольт. Если радиоприбор переносной (мобильный), то использование батарей питания себя оправдывает такой необходимостью. Но если радиоприбор используется стационарно, имеет большой ток потребления, эксплуатируется в условиях наличия бытовой электрической сети, то питание его от батарей практически и экономически не выгодно. Для питания различных устройств низковольтным напряжением от бытовой сети 220 вольт существуют различные виды и типы преобразователей напряжения бытовой сети 220 вольт в пониженное. Как правило, это схемы трансформаторного преобразования.

    Схемы трансформаторного питания строятся по двум вариантам

    1. «Трансформатор – выпрямитель — стабилизатор» — классическая схема питания, обладающая простотой построения, но большими габаритными размерами;

    2. «Выпрямитель — импульсный генератор – трансформатор – выпрямитель – стабилизатор» — схема импульсного источника питания, обладающая малыми габаритными размерами, но имеющая более сложную схему построения.

    Самое главное достоинство указанных схем питания – наличие гальванической развязки первичной и вторичной цепи питания. Это снижает опасность поражения человека электрическим током, и предотвращает выход аппаратуры из строя по причине возможного замыкания токоведущих частей устройства на «ноль». Но иногда, возникает потребность в простой, малогабаритной схеме питания, в которой наличие гальванической развязки не важно. И тогда мы можем собрать простую конденсаторную схему питания . Принцип её работы заключается в «поглощении лишнего напряжения» на конденсаторе. Для того, чтобы разобраться в том, как это поглощение происходит, рассмотрим работу простейшего делителя напряжения на резисторах .

    Делитель напряжения состоит из двух резисторов R1 и R2 . Резистор R1 – ограничительный, или по другому называется добавочный. Резистор R2 – нагрузочный (), он же является внутренним сопротивлением нагрузки.

    Предположим, что нам необходимо из напряжения 220 вольт получить напряжение 12 вольт. Указанные U2 = 12 вольт должны падать на сопротивлении нагрузки R2 . Это означает, что остальное напряжение U1 = 220 – 12 = 208 вольт должно падать на сопротивлении R1 .

    Допустим, что в качестве сопротивления нагрузки мы используем обмотку электромагнитного реле, а активное сопротивление обмотки реле R2 = 80 Ом . Тогда по закону Ома, ток, протекающий через обмотку реле, будет равен: Iцепи = U2/R2 = 12/80 = 0,15 ампер . Указанный ток должен течь и через резистор R1 . Зная, что на этом резисторе должно падать напряжение U1 = 208 вольт , по закону Ома определяем его сопротивление:

    R1 = UR1 / Iцепи = 208/0,15 = 1 387 Ом .

    Определим мощность резистора R1: Р = UR1 * Iцепи = 208 * 0,15 = 31,2 Вт .

    Для того, чтобы этот резистор не грелся от рассеиваемой на нём мощности, реальное значение его мощности необходимо увеличить в раза два, это приблизительно составит 60 Вт . Размеры такого резистора довольно внушительны. И вот здесь нам пригодится конденсатор!

    Мы знаем, что любой конденсатор в цепи переменного тока обладает таким параметром, как «реактивное сопротивление» — сопротивление радиоэлемента изменяющееся в зависимости от частоты переменного тока. Реактивное сопротивление конденсатора определяется по формуле:

    где п – число ПИ = 3,14, f – частота (Гц), С – ёмкость конденсатора (фарад).

    Заменив резистор R1 на бумажный конденсатор С , мы «забудем» что такое резистор внушительных размеров.

    Реактивное сопротивление конденсатора С должно приблизительно равняться ранее рассчитанному значению R1 = Хс = 1 387 Ом .

    Преобразовав формулу заменив местами величины С и Хс , мы определим значение ёмкости конденсатора:


    С1 = 1 / (2*3,14*50*1387) = 2,3*10 -6 Ф = 2,3 мкФ

    Это может быть несколько конденсаторов с требуемой общей ёмкостью, включенных параллельно, или последовательно.

    Схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

    Но изображённая схема работать будет, но не так как мы планировали! Заменив массивный резистор R1 на один, или два малогабаритных конденсатора, мы выиграли в размерах, но не учли одно — конденсатор должен работать в цепи переменного тока, а обмотка реле – в цепи постоянного тока. На выходе нашего делителя переменное напряжение, и его необходимо преобразовать в постоянное. Это достигается вводом в схему диодного выпрямителя разделяющего входную и выходную цепь, а так же элементов сглаживающих пульсацию переменного напряжения в выходной цепи.

    Окончательно, схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

    Конденсатор С2 — сглаживающий пульсации. Для исключения опасности поражения электрическим током от накопленного напряжения в конденсаторе С1 , в схему введен резистор R1 , который шунтирует конденсатор своим сопротивлением. При работе схемы он своим большим сопротивлением не мешает, а после отключения схемы от сети, в течение времени, определяемого секундами, через резистор R1 происходит разряд конденсатора. Время разряда определяется обыкновенной формулой:

    Для того, чтобы следующий раз не делать все вышеперечисленные расчёты, выведем окончательную формулу расчёта ёмкости конденсатора схемы бестрансформаторного (конденсаторного) питания. При известных значениях входного и выходного напряжения, а также сопротивления R2 (оно же — сопротивление нагрузки ), значение сопротивления R1 находится в соответствии с пунктом 3 статьи «Делитель напряжения «:

    Объединив две формулы, находим конечную формулу расчета ёмкости конденсатора схемы бестрансформаторного питания:

    где Р1 .

    Учитывая, что при работе в переменном напряжении в конденсаторе происходят перезарядные процессы, а также сдвиг фазы тока по отношению к фазе напряжения, необходимо брать конденсатор на напряжение в 1,5…2 раза больше того напряжения, которое подаётся в цепь питания. При сети 220 вольт, конденсатор должен быть рассчитан на рабочее напряжение не менее 400 вольт .

    По указанной выше формуле можно рассчитать значение ёмкости схемы бестрансформаторного питания для любого устройства, работающего в режиме постоянной нагрузки. Для работы в условиях переменной нагрузки, меняется также ток и напряжение выходной цепи. Для стабилизации выходного напряжения обычно применяют стабилитроны, или эквивалентные транзисторные схемы, ограничивающие выходное напряжение на необходимом уровне. Одна из таких схем показана на рисунке ниже.

    Вся схема включена в сеть 220 вольт постоянно, а реле Р1 включается в цепь и выключается с помощью выключателя S1 . В качестве выключателя может быть и полупроводниковый прибор, например транзистор. Транзисторный каскад VT1 включен параллельно нагрузке, он исключает увеличение напряжения во вторичной цепи. Когда нагрузка отключена, ток течёт через транзисторный каскад. Если бы этого каскада не было, то при отключении S1 и отсутствии другой нагрузки, на выводах конденсатора С2 напряжение могло бы достигнуть максимального сетевого – 315 вольт.

    Стоит отметить, что при расчёте схем автоматики с реле, необходимо учитывать, что напряжение срабатывания реле, как правило, равно его номинальному (паспортному) значению, а напряжение удержания реле во включенном состоянии приблизительно в 1,5 раза меньше номинального. Поэтому, рассчитывая схему, изображённую выше, оптимально вести расчёт конденсатора для режима удержания, а напряжение стабилизации сделать равным номинальному (или чуть выше номинального). Это позволит работать всей схеме в режиме меньших токов, что повышает надёжность. Таким образом, для расчета емкости конденсатора С1 в схеме с коммутируемой нагрузкой, параметр Uвх мы берём равным не 12 вольт, а в полтора раза меньше – 8 вольт, а для расчёта ограничительного (стабилизирующего) транзисторного каскада – номинальное 12 вольт.

    С1 = 1 / (2 * 3,14 * 50 * ((220 * 80) / 8 – 80)) = 1,5 мкФ
    В качестве стабилизирующего элемента при малых токах можно использовать стабилитрон. При больших токах стабилитрон не годится – слишком малая у него рассеиваемая мощность. Поэтому в таком случае оптимально использовать транзисторную схему стабилизации напряжения. Расчёт стабилизирующего транзисторного каскада основан на использовании порога открытия биполярного транзистора, при достижении напряжения база-эмиттер 0,65 вольта (на кристалле кремния). Но учтите, что для разных транзисторов это напряжение колеблется в пределах 0,1 вольта, не только по типам, но и по экземплярам транзисторов. Поэтому напряжение стабилизации на практике может немного отличаться от рассчитанного значения.
    Расчёт делителя смещения каскада стабилизации проводится всё по тем же формулам делителя напряжения, при известных Uвх.дел. = 12 вольт , Uвых.дел. = 0,65 вольт и токе транзисторного делителя, который должен быть приблизительно в двадцать раз меньше тока протекающего через ёмкость С1 . Этот ток легко найти:

    Iдел. = Uвх.дел. / (20*Rн) = 12 / (20 * 80) = 0,0075 ампер ,
    где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1 , равное 80 Ом .

    Номиналы резисторов R1 и R2 определяются по формулам, ранее опубликованным в статье «Делитель напряжения «:

    ,

    где Rобщ – общее сопротивление резисторов делителя смещения транзистора VT1 , которое находится по закону Ома:

    Итак: Rобщ = 12 / 0,0075 = 1600 Ом ;

    R3 = 0,65 * 1600 / 12 = 86,6 Ом 82 Ом ;

    R2 = 1600 – 86,6 = 1513,4 Ом , по номинальному ряду, ближайший номинал – 1,5 кОм .

    Зная падение напряжения на резисторах и ток делителя, не забудьте рассчитать их габаритную мощность. С запасом, габаритную мощность R2 выбираем в 0,25 Вт, а R3 – в 0,125 Вт. Вообще, вместо резистора R2 лучше поставить стабилитрон, в данном случае это может быть Д814Г, КС211(с любым индексом), Д815Д, или КС212(с любым индексом). Я научил вас рассчитывать резистор намеренно.

    Транзистор выбирается также с запасом падающей на его переходе мощности. Как выбирать транзистор в подобных стабилизирующих каскадах, хорошо описано в статье «Компенсационный стабилизатор напряжения «. Для лучшей стабилизации, возможно использование схемы «составного транзистора».

    Думаю, что статья своей цели достигла, «разжёвано» всё до каждой мелочи.