Виды теплопередачи: теплопроводность, конвекция, излучение. космическое пространство

Предмет: Физика и астрономия

Класс: 8 рус

Тема: Теплопроводность, конвекция, излучение.

Тип урока: Комбинированный

Цель занятия:

Учебная: познакомить с понятием теплопередачи, с видами теплопередачи, объяснить, что передача теплоты при любом из видов теплопередачи всегда идет в одном направлении; что в зависимости от внутреннего строения теплопроводность различных веществ(твердых, жидких и газообразных) различна, что черная поверхность лучший излучатель и лучший поглотитель энергии.

Развивающая: развить познавательный интерес к предмету.

Воспитательная: воспитать чувство ответственности, способность грамотно и четко выражать свои мысли, уметь держать себя и работать в коллективе

Межпредметная связь: химия, математика

Наглядные пособия: 21-30 рисунки, таблица теплопроводности

Технические средства обучения: __________________________________________________

_______________________________________________________________________

Структура урока

1. О рганизация урока (2 мин.)

Приветствие учащихся

Проверка явки учащихся и готовности класса к уроку.

2. Опрос домашнего задания(15 мин) Тема: Внутренняя энергия. Способы изменения внутренней энергии.

3. Объяснение нового материала. (15 мин)

Способ изменения внутренней энергии при котором частицы более нагретого тела, имея большую кинетическую энергию, при контакте с менее нагретым телом передают энергию непосредственно частицам менее нагретого тела называют теплопередачей Существуют три способа теплопередачи: теплопроводность, конвекция и излучение.

Эти виды теплопередачи имеют свои особенности, однакопередача теплоты при каждом из них всегда идет в одном направлении:от более нагретого тела к менее нагретому . При этом внутренняя энергия более нагретого тела уменьшается, а более холодного –увеличивается.

Явление передачи энергии от более нагретой части тела к менее нагретой или от более нагретоготела к менее нагретому через непосредственный контакт или промежуточные тела называется теплопроводностью.

В твердом теле частицы постоянно находятся в колебательном движении, но не изменяют своего равновесного состояния. По мере роста температуры тела при его нагревании молекулы начинают колебаться интенсивнее, так как увеличивается их кинетическая энергия. Часть этой увеличившейся энергии постепенно передается от одной частицы к другой, т.е. от одной части тела к соседнтм частям тела и т.д. Но не все твердые тела одинаково передают энергию. Среди них есть так называемые изоляторы, у которых механизм теплопроводности происходит достаточно медленно. К ним относятся асбест, картон, бумага, войлок, нранит, дерево, стекло и ряд других твердых тел. Большую теплопроводность имеют медб, серебро. Они являются хорошими проводниками тепла.

Ужидкостей теплопроводность невелика. При нагревании жидкости внутренняя энергия переносится из более нагретой области в менее нагретую при соударениях молекул и частично за счет диффузии: юолее быстрые молекулы проникают в менее нагретую область.

Вгазах, особенно в разреженных, молекулы находятся на достаточно больших расстояниях друг от друга, поэтому их теплопроводность еще меньше, чем у жидкостей.

Совершенным изолятором является вакуум , поптому что в нем отсутствуют частицы для передачи внутренней энергии.

Взависимости от внутреннего состояния теплопроводность разных веществ(твердых, жидуих и газообразных) различна.

Теплопроводность зависит от характера переноса энергии в веществе и не связана перемещением самого вещества в теле.

Известно, что теплопроводность воды мала, и при нагревании верхнего слоя воды нижний слой остается холдным. Воздух еще хуже, чем вода, проводит тепло.

Конвекция - это процесс теплопередачи, при котором энергия переносится струями жидкости или газа.Конвекция в переводе с латинского означает «перемешивание». Конвекция отсутствует в твердых телах и не имеет места в вакууме.

Широко используемая в быту и технике ковекция является естественной или свободной .

Когда для равномерного перемешивания жидкостей или газов их перемешивают насосом или мешалкой конвекция называется вынужденной.

Теплоприемник –это прибор, представляющий собойплоскую цилиндрическую емкость из металла, одна сторона которой черная, а другая блестящая. Внутри нее имеется воздух, который при нагревании может расширяться и выходить наружу через отверстие.

В случае, когда теплота передается от нагретого тела к теплоприемнику с помощью невидимых глазом тепловых лучей вид теплопередачи называется излучением или лучистым теплообменом

Поглощением называетсяпроцесс превращения энергии излучения во внутреннюю энергию тела

Излучением (или лучистым теплообменом)- называется процесс передачи энергии от одного тела к другому с помощью электромагнитных волн.

Чем больше температура тела, тем выше интенсивность излучения. Передача энергии излучением не нуждается в среде: тепловые лучи могут распространяться и через вакуум.

Черная поверхность -лучший излучатель и лучший поглотитель, а затем следуют грубая, белая и полированная поверхности.

Хорошие поглотители энергии- хорошие излучатели, а плохие поглотители- плохие излучатели энергии.

4. Закрепление : (10 мин) вопросы для самопроверки, задания и упражнения

ные задания:1)Сравнение теплопроводности металла и стекла, воды и воздуха, 2)Наблюдение конвекции в жилом помещении.

6. Оценка знаний учащихся.(1 мин)

Основная литература: Физика и астрономия 8 класс

Дополнительная литература: Н. Д. Бытько «Физика» части 1 и 2






ТЕПЛОПРОВОДНОСТЬ В алюминиевую и стеклянную кастрюли одинаковой вместимости налили горячую воду. Какая из кастрюль быстрее нагреется до температуры налитой в нее воды? Алюминий быстрее проводит тепло по сравнению со стеклом, поэтому алюминиевая кастрюля быстрее нагреется до температуры налитой в нее воды




КОНВЕКЦИЯ В промышленных холодильниках воздух охлаждается с помощью труб, по которым течет охлажденная жидкость. Где надо располагать эти трубы: вверху или внизу помещения? Для охлаждения помещения трубы, по которым течет охлажденная жидкость, нужно располагать вверху. Горячий воздух, соприкасаясь с холодными трубами, будет охлаждаться и под действием силы Архимеда опускаться вниз.







Вид теплопередачи Особенности теплопередачи Рисунок Теплопроводность Требует определенного времени Вещество не перемещается Атомно-молекулярный перенос энергии Конвекция Переносится вещество струями Наблюдается в жидкости и газе Естественная, вынужденная Теплый вверх, холодный вниз Излучение Излучают все нагретые тела Осуществляется в полном вакууме Излучается, отражается, поглощается


Теплопередача - самопроизвольный необратимый процесс переноса энергии от более нагретых тел или участков тела к менее нагретым. Теплопередача является способом изменения внутренней энергии тела или системы тел. Теплопередача определяет и сопровождает процессы в природе, в технике и в быту. Различают три вида теплопередачи: теплопроводность, конвекция и лучеиспускание.

10/22/16 03:50:35 PM

Виды теплопередачи

Физика 8 кл.

© Корпорация Майкрософт (Microsoft Corporation), 2007. Все права защищены. Microsoft, Windows, Windows Vista и другие названия продуктов являются или могут являться зарегистрированными товарными знаками и/или товарными знаками в США и/или других странах.

Информация приведена в этом документе только в демонстрационных целях и не отражает точку зрения представителей корпорации Майкрософт на момент составления данной презентации. Поскольку корпорация Майкрософт вынуждена учитывать меняющиеся рыночные условия, она не гарантирует точность информации, указанной после составления этой презентации, а также не берет на себя подобной обязанности. КОРПОРАЦИЯ МАЙКРОСОФТ НЕ ДАЕТ НИКАКИХ ЯВНЫХ, ПОДРАЗУМЕВАЕМЫХ ИЛИ ЗАКРЕПЛЕННЫХ ЗАКОНОДАТЕЛЬСТВОМ ГАРАНТИЙ В ОТНОШЕНИИ СВЕДЕНИЙ ИЗ ЭТОЙ ПРЕЗЕНТАЦИИ.


ТЕПЛОПРОВОДНОСТЬ

перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела.


Разные материалы обладают разной теплопроводностью

Медь Сталь


ТЕПЛОПРОВОДНОСТЬ В БЫТУ

Хорошая теплопроводность

Плохая теплопроводность


КОНВЕКЦИЯ

это перенос энергии струями жидкости или газа. При конвекции происходит перенос вещества.


КОНВЕКЦИЯ МОЖЕТ БЫТЬ:

ЕСТЕСТВЕННАЯ

ИСКУССТВЕННАЯ

(ПРИНУДИТЕЛЬНАЯ)


Конвекция в быту

Отопление жилья

Охлаждение жилья


И при теплопроводности и при конвекции одним из условий передачи энергии выступает наличие вещества. Но как же к нам на Землю передается тепло Солнца, ведь космическое пространство – вакуум, т.е. там нет вещества, или оно находится в очень разреженном состоянии?

Следовательно существует какой то еще способ передачи энергии


ИЗЛУЧЕНИЕ

Излучение – процесс испускания и распространения энергии в виде волн и частиц.


Все окружающие нас тела излучают тепло в той или иной степени

Солнечный свет

Прибор ночного видения позволяет уловить самое слабое тепловое излучение и преобразовать его в изображение


Светлые (зеркальные) поверхности – отражают тепловое излучение

Таким образом можно уменьшить потери тепла, или направить тепло в нужное место


Темные поверхности поглощают тепловое излучение

Солнечный коллектор - устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближним инфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.



  • Почему красиво оформленные радиаторы отопления не помещают в комнате у потолка?
  • Почему в жаркий солнечный летний день мы надеваем легкую и светлую одежду, закрываем голову светлой шляпой, панамой и т.д.?
  • Почему на ощупь ножницы холоднее, чем карандаш?

1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.

Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.

2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества. Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.

Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.

3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими - сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция .

Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.

Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается. На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д. Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).

Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией .

Конвекция - вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.

Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

5. Третий вид теплопередачи - излучение . Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).

Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха. Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к. плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.

Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.

Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.

Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

Часть 1

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность
2) только конвекция
4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.

Ответы

Виды теплообмена (теплопроводность, конвекция, тепловое излучение).

Теплопрово́дность - это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Способность вещества проводить тепло характеризуется коэффициентом теплопроводности (удельной теплопроводность). Численно эта характеристика равна количеству теплоты, проходящей через материал площадью 1 м² за единицу времени (секунду) при единичном температурном градиенте.

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где - вектор плотности теплового потока - количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, - коэффициент теплопроводности (удельная теплопроводность), - температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье .

Конве́кция- это распространение теплоты,обусловленное перемещением макроскопических элементов среды. Объемы жидкости или газа, перемещаясь из области с большей температурой в область с меньшей температурой,переносят с собой теплоту. Конвективный перенос обычно сопровождается теплопроводностью.

Конвективный перенос может осуществляться в результате свободного или вынужденного движения теплоносителя. Свободное движение возникает тогда, когда частицы жидкости в различных участках системы находятся под воздействием массовых сил различной величины,т.е. когда поле массовых сил не однородно.

Вынужденное движение происходит под действием внешних поверхностных сил. Разность давлений, под действием которой перемещается теплоноситель, создается с помощью насосов, эжекторов, и других устройств.

Теплообмен излучением(радиационный теплообмен)состоит из испускания энергии излучения телом, распространения ее в пространстве между телами и поглощения ее другими телами. В процессе испускания внутренней энергии излучающего тела превращается в энергию электромагнитных волн, которые распространяются во всех направлениях. Тела, расположенные на пути распространения энергии излучения, поглощают часть падающих на них электромагнитных волн, и таким образом энергия излучения превращается во внутреннюю энергию поглощающего тела.

1. Обработка поверхностей тел вращения: шлифование.

Шлифование – процесс обработки всевозможных поверхностей на соответствующем оборудовании с использованием абразивного инструмента. Точность до 6 квалитета. Ra=0.16 ….. 0.32 мкм

Виды шлифования Квалитет Ra (мкм)

Обдирочное 8-9 2,5-5

Предварительное 6-9 1,2-2,5

Окончательное 5-6 0,2-1,2

Тонкое -- 0,25-0,1

Инструмент: шлифовальные и абразивные круги.

Методы шлифования:

Круглошлифовальные станки.

А) Шлифование с продольной подачей

Стол с заготовкой совершает возвратно-поступательное движение (продольная подача),заготовка - круговую подачу; круг – главное движение резания и поперечную подачу.

Б) Врезное шлифование

Круг совершает главное движения резания и поперечную подачу (врезание), заготовка осуществляет круговую подачу.

Достоинства продольного шлифования:

Можно обрабатывать поверхности длиной более 50 мм;

Более точный;

Равномерный износ круга;

Применяют мягкие круги, не требующие частой правки;

Минимальное тепловыделение.

Достоинства врезного шлифования:

Большая производительность;

Возможность многоинструментальной наладки;

Одновременное шлифование шейки и торца.

Недостатки врезного шлифования:

Можно обрабатывать поверхности длиной до 50 мм;

Неравномерный износ круга;

Необходима частая правка круга;

Большое тепловыделение;

Станки повышенной мощности и жесткости.

Бесцентровое шлифование

А) с радиальной подачей – применяется для обработки коротких деталей;

Б) с осевой подачей;

Ось круга устанавливают под углом к оси заготовки, за счет этого получаем осевую подачу. Применяется для обработки длинных, гладких валов.

Шлифование – технологический способ обработки металлов позволяющий получать на деталях поверхности высокого качества с высокой точности размеров.

Шлифование выполняется – шлифовальными кругами, которые режут абразивными зернами из минералов и сверхтвердых материалов, имеющих случайную форму и взаимное расположение.

Особенностью является срезание каждым зерном как режущим зубом небольшого слоя металла, в результате чего на поверхности детали остается царапина ограниченной длины и малой площадью поперечного сечения.

При изготовлении деталей машин и приборов шлифование применяется для завершающей чистовой обработки, позволяя получать поверхности с точностью размеров по 6-7 квалитетам с шероховатостью Ra=0,08..0,32 мкм.

Виды шлифования: наружное круглое, внутреннее круглое, плоское, торцовое.

2. Понятие алгоритма. Его структура.

Алгоритм –упорядоченная совокупность системы правил, определяющая содержание и порядок действий над некоторыми объектами, строгое выполнение которых приводит к решению любой задачи из рассматриваемого класса задач за конечное число шагов.

Базовые структуры алгоритмов - это определенный набор блоков и стандартных способов их соединения для выполнения типичных последовательностей действий.

К основным структурам относятся следующие:

o линейные

o разветвляющиеся

o циклические

Линейными называются алгоритмы, в которых действия осуществляются последовательно друг за другом. Стандартная блок-схема линейного алгоритма приводится ниже:

Разветвляющимся называется алгоритм, в котором действие выполняется по одной из возможных ветвей решения задачи, в зависимости от выполнения условий. В отличие от линейных алгоритмов, в которых команды выполняются последовательно одна за другой, в разветвляющиеся алгоритмы входит условие, в зависимости от выполнения или невыполнения которого выполняется та или иная последовательность команд (действий).



В качестве условия в разветвляющемся алгоритме может быть использовано любое понятное исполнителю утверждение, которое может соблюдаться (быть истинно) или не соблюдаться (быть ложно). Такое утверждение может быть выражено как словами, так и формулой. Таким образом, алгоритм ветвления состоит из условия и двух последовательностей команд.

В зависимости от того, в обоих ветвях решения задачи находится последовательность команд или только в одной разветвляющиеся алгоритмы делятся на полные и не полные (сокращенные).
Стандартные блок-схемы разветвляющегося алгоритма приведены ниже:

Циклическим называется алгоритм, в котором некоторая часть операций (тело цикла - последовательность команд) выполняется многократно. Однако слово «многократно» не значит «до бесконечности». Организация циклов, никогда не приводящая к остановке в выполнении алгоритма, является нарушением требования его результативности - получения результата за конечное число шагов.

Перед операцией цикла осуществляются операции присвоения начальных значений тем объектам, которые используются в теле цикла. В цикл входят в качестве базовых следующие структуры:

o блок проверки условия

o блок, называемый телом цикла

Существуют три типа циклов:

· Цикл с предусловием

· Цикл с постусловием

· Цикл с параметром (разновидность цикла с предусловием)

Если тело цикла расположено после проверки условий, то может случиться, что при определенных условиях тело цикла не выполнится ни разу. Такой вариант организации цикла, управляемый предусловием, называетсяциклом c предусловием .

Возможен другой случай, когда тело цикла выполняется по крайней мере один раз и будет повторяться до тех пор, пока не станет ложным условие. Такая организация цикла, когда его тело расположено перед проверкой условия, носит название цикла с постусловием .

Цикл с параметром является разновидностью цикла с предусловием. Особенностью данного типа цикла является то, что в нем имеется параметр, начальное значение которого задается в заголовке цикла, там же задается условие продолжения цикла и закон изменения параметра цикла. Механизм работы полностью соответствует циклу с предусловием, за исключением того, что после выполнения тела цикла происходит изменение параметра по указанному закону и только потом переход на проверку условия.
Стандартные блок-схемы циклических алгоритмов приведены ниже:

Вопрос 1. Анализ агрегатов подачи топлива в ДЛА

Вопрос 2. Обработка отверстий: сверление, растачивание, зенкерование, развертывание.

Вопрос 3. Виды, разрезы, сечения в машиностроительном черчении

1. Анализ агрегатов подачи топлива в ДЛА

Схемы жидкостных ракетных двигателей (ЖРД) отличаются главным образом системами подачи топлива . В ЖРД любой схемы давление топлива перед камерой сгорания должно быть больше давления в камере, иначе невозможно будет подавать компоненты топлива через форсунки . Существует две системы подачи топлива – вытеснительная и насосная . Первая более простая и используется преимущественно в двигателях сравнительно небольших ракет, вторая – в двигателях ракет дальнего действия.

СИСТЕМА ПОДАЧИ ТОПЛИВА НАСОСНАЯ - (жидкостного ракетного двигателя) - совокупность механизмов или устройств, обеспечивающих подачу компонентов топлива из баков в камеру жидкостного ракетного двигателя при помощи насосов. При насосной системе подачи топлива можно получить меньший общий вес силовой установки, чем при вытеснительной системе подачи топлива.

При вытеснительной подаче компоненты топлива подаются в камеру сгорания при помощи сжатого газа , поступающего через редуктор в топливные баки. Редуктор обеспечивает постоянство давления в топливных баках и равномерную подачу топлива в камеру сгорания. В этом случае в баках ракеты устанавливается большое давление, поэтому они должны быть достаточно прочными. Это увеличивает вес конструкции, это увеличивает вес конструкции, что является недостатком всех вытеснительных систем подачи топлива.

2. Обработка отверстий: сверление, растачивание, зенкерование,

развертывание.

Сверлением получают отверстия в сплошном материале. Для неглубоких отверстий используются стандартные сверла диаметром 0,30...80 мм. Существуют два метода сверления: 1) вращается сверло (станки сверлильно-расточных групп); 2) вращается заготовка (станки токарной группы). Обработку отверстий диаметром до 25...40 мм осуществляют спиральными сверлами за один переход, при обработке отверстий больших диаметров (до 80 мм) – за два и более перехода сверлением и рассверливанием или другимиметодами. Для сверления отверстий диаметром свыше 80 мм применяют сверла или сверлильные головки специальных конструкций. При обработке глубоких отверстий (L/D > 10) трудно обеспечить направленность оси отверстия относительно ее внутренней цилиндрической поверхности. Чем больше длина отверстия, тем больше увод инструмента. Для борьбы с уводом сверла или искривлением оси отверстия применяются следующие способы: − применение малых подач, тщательная заточка сверла; − применение предварительного засверливания (зацентровки); − сверление с направлением спирального сверла с помощью кондукторной втулки; − сверление вращающейся заготовки при невращающемся или вращающемся сверле. Это самый радикальный способ устранения увода сверла, так как создаются условия для самоцентрирования сверла; − сверление специальными сверлами при вращающейся или неподвижной заготовке. К специальным сверлам относятся: − полукруглые – разновидность ружейных сверл одностороннего резания, которые применяются для обработки заготовок из материалов, дающих хрупкую стружку (латунь, бронза, чугун); − ружейные – одностороннего резания с внешним отводом СОЖ и внутренним отводом (эжекторные)с пластинами из твердого сплава (припаянными или неперетачиваемыми с механическим креплением), предназначенные для высокопроизводительного сверления; − трепанирующие (кольцевые) сверла (рис. 38, г) для сверления отверстий диаметром 80 мм и более, длиной до 50 мм; Они вырезают в сплошном металле кольцевую поверхность, а остающуюся после такого сверления внутреннюю часть вформе цилиндра можно использовать как заготовку для изготовления других деталей. Зенкерование отверстий – предварительная обработка литых, штампованных или просверленных отверстий под по-следующее развертывание, растачивание или протягивание. При обработке отверстий по 13...11-му квалитету зенкерованиеможет быть окончательной операцией. Зенкерованием обрабатывают цилиндрические углубления (под головки винтов, гнездпод клапаны и др.), торцовые и другие поверхности. Режущим инструментом при зенкеровании является зенкер. Зенкеры изготовляют цельными с числом зубьев 3...8 и бо-лее, диаметром 3...40 мм; насадными диаметром 32...100 мм и сборными регулируемыми диаметром 40...120 мм. Зенкерование является производительным методом: повышает точность предварительно обработанных отверстий, час-тично исправляет искривление оси после сверления. Для повышения точности обработки используют приспособления с кон-дукторными втулками. Зенкерованием обрабатывают сквозные и глухие отверстия. Зенкеры исправляют, но не устраняют полностью оси отверстия, достигаемая шероховатость Rа = 12,5...6,3 мкм. Развертывание отверстий – чистовая обработка отверстий с точностью до 7-го квалитета. Развертыванием обрабаты-вают отверстия тех же диаметров, что и при зенкеровании. Развертки рассчитаны на снятие малого припуска. Они отличают-ся от зенкеров большим числом (6...14) зубьев. Развертыванием достигается высокая точность диаметральных размеров иформы, а также малая шероховатость поверхности. Следует отметить, что обработанное отверстие получается несколькобольшего диаметра, чем диаметр самой развертки. Такая разбивка может составлять 0,005...0,08 мм. Для получения отверстий 7 квалитета применяют двукратное развертывание; IТ6 – трехкратное, под окончательное раз-вертывание припуск оставляют 0,05 мм и менее.Растачивание основных отверстий (определяющих конструкцию детали) произво-дится на: горизонтально-расточных, координатно-расточных, радиально-сверлильных,карусельных и агрегатных станках, многоцелевых обрабатывающих центрах, а также внекоторых случаях и на токарных станках. Существуют два основных способа растачивания: растачивание, при котором вращается заготовка (на станках токарнойгруппы), и растачивание, при котором вращается инструмент (на станках расточной группы) Типичными для токарных станков операциями являются растачивание одиночного отверстия и растачивание соосных отверстий универсальным методом и резцом (резцами).

Сверление - один из наиболее распространенных способов получения цилиндрических отверстий глухих и сквозных в сплошном материале Когда требования по точности не выходят за 11-12 квалитет. Процесс сверления совершается при двух совместных движениях: вращение сверла или детали вокруг оси отверстия (главное движение) и поступательном движении сверла вдоль оси (движение подачи).

При работе на сверлильном станке сверло совершает оба движения, заготовка крепится неподвижно на столе станка. При работе на токарных и револьверных станках, а так же на токарных автоматах вращается деталь, а сверло совершает поступательное перемещение вдоль оси.

1. передняя поверхность - винтовая поверхность, по которой сходит стружжа.
2. задняя поверхность - поверхность обращенная к поверхности резания.
3. режущая кромка - линия образованная пересечением передней и задней поверхности.
4. ленточка - узкая полоска на цилиндрической поверхности сверла, расположенная вдоль оси. Обеспечивает сверлу направление.
5. поперечная кромка - линия образованная в результате пересечения обеих задних поверхностей
2φ от 90-2400; ω до 300, γ-передний угол(к центру меньше, к периферии увеличивается)

Зенкерование – обработка предварительно полученных отверстий для придания им более правильной геометрической формы, повышения точности и снижения шероховатости. Многолезвийный режущим инструментом – зенкером, который имеет более жесткую рабочую част, отсутствует! число зубьев не менее трех (рис.19.3.г).

Развертывание – окончательная обработка цилиндрического или конического отверстия разверткой в целях получения высокой точности и низкой шероховатости. Развертки – многолезвийный инструмент, срезающий очень тонкие слои с обрабатываемой поверхности (рис.19.3.д).

Растачивают отверстия на токарных станках тогда, когда сверление, рассверливание или зенкерование не обеспечивают необходимой точности размеров отверстия, а также чистоты обработанной поверхности, либо когда отсутствует сверло или зенкер требуемого диаметра.

При растачивании отверстий на токарных станках можно получить отверстие не выше 4-3-го класса точности и чистоту обработанной поверхности 3-4 при черновой обработке и 5-7 при чистовой.

Расточные резцы и их установка. Растачивают отверстия на токарных станках расточными резцами (рис. 118). В зависимости от вида растачиваемого отверстия различают: расточные резцы для сквозных отверстия (рис. 118, а) и расточные резцы для глухих отверстий (рис. 118, б). Эти резцы отличаются между собой главным углом в плане φ. При растачивании сквозных отверстий (рис. 118, а) главный угол в плане φ=60°. Если растачивается глухое отверстие с уступом 90°, то главный угол в плане φ=90° (рис. 118, б) и резец работает как упорно-проходной или φ=95° (рис. 118, в) - резец работает с продольной подачей как упорно-проходной, а затем с поперечной подачей как подрезной.

2. Виды, разрезы, сечения в машиностроительном черчении

Виды

4. Виды на чертеже располагаются следующим образом:

5. Расположение видов

6. Если виду располагаются не по проекционной связи, то их нужно указывать по стрелке.

7. Указание видов вне проекционной связи

Разрезы

9. На разрезах указывается то, что находится за секущей плоскостью.

10. На чертеже виды могут быть совмещены с разрезами. В качестве границы между видом и разрезом может

11. быть использована только штрихпунктирная линия или волнистая линия.

13. Разрезы

Сечения

15. На сечениях изображается то, что находиться в секущей плоскости.

16. Если сечение распадается на несколько частей, то вместо сечения следует использовать разрез.

17. Изображение сечения не чертеже

Изображение обращенной к наблюдателю видимой части поверхности предмета называют видом.

ГОСТ 2.305-68 устанавливает следующее название основных видов, получаемых на основных плоскостях проекций (см. рис. 165): 7 - вид спереди (главный вид); 2 - вид сверху; 3 - вид слева; 4 - вид справа; 5 - вид снизу; б - вид сзади. В практике более широко применяются три вида: вид спереди, вид сверху и вид слева.

Основные виды обычно располагаются в проекционной связи между собой. В этом случае название видов на чертеже надписывать не нужно.

Если какой-либо вид смещен относительно главного изображения, проекционная связь его с главным видом нарушена, то над этим видом выполняют надпись по типу «А» (рис. 166).

Изображение предмета, мысленно рассеченного одной или несколькими плоскостями, называют разрезом. Мысленное рассечение предмета относится только к данному разрезу и не влечет за собой изменения других изображений того же предмета. На разрезе показывают то, что получается в секущей плоскости и что расположено за ней.

Разрезы применяются для изображения внутренних поверхностей предмета, чтобы избежать большого количества штриховых линий, которые могут перекрывать друг друга при сложном внутреннем строении предмета и затруднять чтение чертежа.

Чтобы выполнить разрез, необходимо: в нужном месте предмета мысленно провести секущую плоскость (рис. 173, а); часть предмета, находящегося между наблюдателем и секущей плоскостью, мысленно отбросить (рис. 173, б), оставшуюся часть предмета проецировать на соответствующую плоскость проекций, изображение выполнить или на месте соответствующего вида, или на свободном поле чертежа (рис. 173, в); плоскую фигуру, лежащую в секущей плоскости, заштриховать; при необходимости дать обозначение разреза.

Рис. 173 Выполнение разреза

В зависимости от числа секущих плоскостей разрезы разделяются на простые - при одной секущей плоскости, сложные - при нескольких секущих плоскостях.

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы разделяются на:

горизонтальные - секущая плоскость параллельна горизонтальной плоскости проекций;

вертикальные - секущая плоскость перпендикулярна горизонтальной плоскости проекций;

наклонные - секущая плоскость составляет с горизонтальной плоскостью проекций угол, отличный от прямого.

Вертикальный разрез называют фронтальным, если секущая плоскость параллельна фронтальной плоскости проекций, и профильным, если секущая плоскость параллельна профильной плоскости проекций.

Сложные разрезы бывают ступенчатыми, если секущие плоскости параллельны между собой, и ломаными, если секущие плоскости пересекаются между собой.

Разрезы называются продольными, если секущие плоскости направлены вдоль длины или высоты предмета, или поперечными, если секущие плоскости направлены перпендикулярно длине или высоте предмета.

Местные разрезы служат для выявления внутреннего строения предмета в отдельном ограниченном месте. Местный разрез выделяется на виде сплошной волнистой тонкой линией.

Положение секущей плоскости указывают разомкнутой линией сечения. Начальные и конечные штрихи линии сечения не должны пересекать контур соответствующего изображения. На начальном и конечном штрихах нужно ставить стрелки, указывающие направление взгляда (рис. 174). Стрелки должны наноситься на расстоянии 2...3 мм от внешнего конца штриха. При сложном разрезе штрихи разомкнутой линии сечения проводят также у перегибов линии сечения.

Рис. 174 Стрелки, указывающие направление взгляда

Около стрелок, указывающих направление взгляда с внешней стороны угла, образованного стрелкой и штрихом линии сечения, на горизонтальной строке наносят прописные буквы русского алфавита (рис. 174). Буквенные обозначения присваиваются в алфавитном порядке без повторений и без пропусков, за исключением букв И, О, X, Ъ, Ы, Ь .

Сам разрез должен быть отмечен надписью по типа «А - А» (всегда двумя буквами, через тире).

Если секущая плоскость совпадает с плоскостью симметрии предмета, а разрез выполнен на месте соответствующего вида в проекционной связи и не разделен каким-либо другим изображением, то для горизонтальных, вертикальных и профильных разрезов отмечать положение секущей плоскости не нужно и разрез надписью не сопровождать. На рис. 173 фронтальный разрез не обозначен.

Простые наклонные разрезы и сложные разрезы обозначают всегда.