Error: не определено #11234. Формула пересечения двух прямых. Пересекаются ли прямые: пересечение отрезков на плоскости

Формула пересечения двух прямых. Пересекаются ли прямые: пересечение отрезков на плоскости

В двумерном пространстве две прямые пересекаются только в одной точке, задаваемой координатами (х,y). Так как обе прямые проходят через точку их пересечения, то координаты (х,y) должны удовлетворять обоим уравнениям, которые описывают эти прямые. Воспользовавшись некоторыми дополнительными навыками вы сможете находить точки пересечения парабол и других квадратичных кривых.

Шаги

Точка пересечения двух прямых

    Запишите уравнение каждой прямой, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения. Возможно, данное вам уравнение вместо «у» будет содержать переменную f(x) или g(x); в этом случае обособьте такую переменную. Для обособления переменной выполните соответствующие математические операции на обеих сторонах уравнения.

    • Если уравнения прямых вам не даны, на основе известной вам информации.
    • Пример . Даны прямые, описываемые уравнениями и y − 12 = − 2 x {\displaystyle y-12=-2x} . Чтобы во втором уравнении обособить «у», прибавьте к обеим сторонам уравнения число 12:
  1. Вы ищете точку пересечения обеих прямых, то есть точку, координаты (х,у) которой удовлетворяют обоим уравнениям. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять. Запишите новое уравнение.

    • Пример . Так как y = x + 3 {\displaystyle y=x+3} и y = 12 − 2 x {\displaystyle y=12-2x} , то можно записать такое равенство: .
  2. Найдите значение переменной «х». Новое уравнение содержит только одну переменную «х». Для нахождения «х» обособьте эту переменную на левой стороне уравнения, выполнив соответствующие математические операции на обеих сторонах уравнения. Вы должны получить уравнение вида х = __ (если вы не можете это сделать, этого раздела).

    • Пример . x + 3 = 12 − 2 x {\displaystyle x+3=12-2x}
    • Прибавьте 2 x {\displaystyle 2x} к каждой стороне уравнения:
    • 3 x + 3 = 12 {\displaystyle 3x+3=12}
    • Вычтите 3 из каждой стороны уравнения:
    • 3 x = 9 {\displaystyle 3x=9}
    • Разделите каждую сторону уравнения на 3:
    • x = 3 {\displaystyle x=3} .
  3. Используйте найденное значение переменной «х» для вычисления значения переменной «у». Для этого подставьте найденное значение «х» в уравнение (любое) прямой.

    • Пример . x = 3 {\displaystyle x=3} и y = x + 3 {\displaystyle y=x+3}
    • y = 3 + 3 {\displaystyle y=3+3}
    • y = 6 {\displaystyle y=6}
  4. Проверьте ответ. Для этого подставьте значение «х» в другое уравнение прямой и найдите значение «у». Если вы получите разные значение «у», проверьте правильность ваших вычислений.

    • Пример: x = 3 {\displaystyle x=3} и y = 12 − 2 x {\displaystyle y=12-2x}
    • y = 12 − 2 (3) {\displaystyle y=12-2(3)}
    • y = 12 − 6 {\displaystyle y=12-6}
    • y = 6 {\displaystyle y=6}
    • Вы получили такое же значение «у», поэтому в ваших вычислениях ошибок нет.
  5. Запишите координаты (х,у). Вычислив значения «х» и «у», вы нашли координаты точки пересечения двух прямых. Запишите координаты точки пересечения в виде (х,у).

    • Пример . x = 3 {\displaystyle x=3} и y = 6 {\displaystyle y=6}
    • Таким образом, две прямые пересекаются в точке с координатами (3,6).
  6. Вычисления в особых случаях. В некоторых случаях значение переменной «х» найти нельзя. Но это не значит, что вы допустили ошибку. Особый случай имеет место при выполнении одного из следующих условий:

    • Если две прямые параллельны, они не пересекаются. При этом переменная «х» просто сократится, а ваше уравнение превратится в бессмысленное равенство (например, 0 = 1 {\displaystyle 0=1} ). В этом случае в ответе запишите, что прямые не пересекаются или решения нет.
    • Если оба уравнения описывают одну прямую, то точек пересечения будет бесконечное множество. При этом переменная «х» просто сократится, а ваше уравнение превратится в строгое равенство (например, 3 = 3 {\displaystyle 3=3} ). В этом случае в ответе запишите, что две прямые совпадают.

    Задачи с квадратичными функциями

    1. Определение квадратичной функции. В квадратичной функции одна или несколько переменных имеют вторую степень (но не выше), например, x 2 {\displaystyle x^{2}} или y 2 {\displaystyle y^{2}} . Графиками квадратичных функций являются кривые, которые могут не пересекаться или пересекаться в одной или двух точках. В этом разделе мы расскажем вам, как найти точку или точки пересечения квадратичных кривых.

    2. Перепишите каждое уравнение, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения.

      • Пример . Найдите точку (точки) пересечения графиков x 2 + 2 x − y = − 1 {\displaystyle x^{2}+2x-y=-1} и
      • Обособьте переменную «у» на левой стороне уравнения:
      • и y = x + 7 {\displaystyle y=x+7} .
      • В этом примере вам дана одна квадратичная функция и одна линейная функция. Помните, что если вам даны две квадратичные функции, вычисления аналогичны шагам, изложенным далее.
    3. Приравняйте выражения, расположенные с правой стороны каждого уравнения. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять.

      • Пример . y = x 2 + 2 x + 1 {\displaystyle y=x^{2}+2x+1} и y = x + 7 {\displaystyle y=x+7}
    4. Перенесите все члены полученного уравнения на его левую сторону, а на правой стороне запишите 0. Для этого выполните базовые математические операции. Это позволит вам решить полученное уравнение.

      • Пример . x 2 + 2 x + 1 = x + 7 {\displaystyle x^{2}+2x+1=x+7}
      • Вычтите «x» из обеих сторон уравнения:
      • x 2 + x + 1 = 7 {\displaystyle x^{2}+x+1=7}
      • Вычтите 7 из обеих сторон уравнения:
    5. Решите квадратное уравнение. Перенеся все члены уравнения на его левую сторону, вы получили квадратное уравнение. Его можно решить тремя способами: при помощи специальной формулы, и .

      • Пример . x 2 + x − 6 = 0 {\displaystyle x^{2}+x-6=0}
      • При разложении уравнения на множители вы получите два двучлена, при перемножении которых получается исходное уравнение. В нашем примере первый член x 2 {\displaystyle x^{2}} можно разложить на х*х. Сделайте следующую запись: (x)(x) = 0
      • В нашем примере свободный член -6 можно разложить на следующие множители: − 6 ∗ 1 {\displaystyle -6*1} , − 3 ∗ 2 {\displaystyle -3*2} , − 2 ∗ 3 {\displaystyle -2*3} , − 1 ∗ 6 {\displaystyle -1*6} .
      • В нашем примере второй член – это х (или 1x). Сложите каждую пару множителей свободного члена (в нашем примере -6), пока не получите 1. В нашем примере подходящей парой множителей свободного члена являются числа -2 и 3 ( − 2 ∗ 3 = − 6 {\displaystyle -2*3=-6} ), так как − 2 + 3 = 1 {\displaystyle -2+3=1} .
      • Заполните пробелы найденной парой чисел: .
    6. Не забудьте про вторую точку пересечения двух графиков. Если вы решаете задачу быстро и не очень внимательно, вы можете забыть про вторую точку пересечения. Вот как найти координаты «х» двух точек пересечения:

      • Пример (разложение на множители) . Если в уравнении (x − 2) (x + 3) = 0 {\displaystyle (x-2)(x+3)=0} одно из выражений в скобках будет равно 0, то все уравнение будет равно 0. Поэтому можно записать так: x − 2 = 0 {\displaystyle x-2=0} x = 2 {\displaystyle x=2} и x + 3 = 0 {\displaystyle x+3=0} x = − 3 {\displaystyle x=-3} (то есть вы нашли два корня уравнения).
      • Пример (использование формулы или дополнение до полного квадрата) . При использовании одного из этих методов в процессе решения появится квадратный корень. Например, уравнение из нашего примера примет вид x = (− 1 + 25) / 2 {\displaystyle x=(-1+{\sqrt {25}})/2} . Помните, что при извлечении квадратного корня вы получите два решения. В нашем случае: 25 = 5 ∗ 5 {\displaystyle {\sqrt {25}}=5*5} , и 25 = (− 5) ∗ (− 5) {\displaystyle {\sqrt {25}}=(-5)*(-5)} . Поэтому запишите два уравнения и найдите два значения «х».
    7. Графики пересекаются в одной точке или вообще не пересекаются. Такие ситуации имеют место при соблюдении следующих условий:

      • Если графики пересекаются в одной точке, то квадратное уравнение раскладывается на одинаковые множители, например, (х-1) (х-1) = 0, а в формуле появляется квадратный корень из 0 ( 0 {\displaystyle {\sqrt {0}}} ). В этом случае уравнение имеет только одно решение.
      • Если графики вообще не пересекаются, то уравнение на множители не раскладывается, а в формуле появляется квадратный корень из отрицательного числа (например, − 2 {\displaystyle {\sqrt {-2}}} ). В этом случае в ответе напишите, что решения нет.
  1. Чтобы найти координаты точки пересечения графиков функций нужно приравнять обе функции друг к другу, перенести в левую часть все члена, содержащие $ x $, а в правую остальные и найти корни, полученного уравнения.
  2. Второй способ заключается в том, что нужно составить систему уравнений и решить её путём подстановки одной функции в другую
  3. Третий способ подразумевает графическое построение функций и визуальное определение точки пересечения.

Случай двух линейных функций

Рассмотрим две линейные функции $ f(x) = k_1 x+m_1 $ и $ g(x) = k_2 x + m_2 $. Эти функции называются прямыми. Построить их достаточно легко, нужно взять любые два значения $ x_1 $ и $ x_2 $ и найти $ f(x_1) $ и $ (x_2) $. Затем повторить тоже самое и с функцией $ g(x) $. Далее визуально найти координату точки пересечения графиков функций.

Следует знать, что линейные функции имеют только одну точку пересечения и только тогда, когда $ k_1 \neq k_2 $. Иначе, в случае $ k_1=k_2 $ функции параллельны друг другу, так как $ k $ - это коэффициент угла наклона. Если $ k_1 \neq k_2 $, но $ m_1=m_2 $, тогда точкой пересечения будет $ M(0;m) $. Это правило желательно запомнить для ускоренного решения задач.

Пример 1
Пусть даны $ f(x) = 2x-5 $ и $ g(x)=x+3 $. Найти координаты точки пересечения графиков функций.
Решение

Как это сделать? Так как представлены две линейные функции, то первым делом смотрим на коэффициент угла наклона обеих функций $ k_1 = 2 $ и $ k_2 = 1 $. Замечаем, что $ k_1 \neq k_2 $, поэтому существует одна точка пересечения. Найдём её с помощью уравнения $ f(x)=g(x) $:

$$ 2x-5 = x+3 $$

Переносим слагаемые с $ x $ в левую часть, а остальные в правую:

$$ 2x - x = 3+5 $$

Получили $ x=8 $ абциссу точки пересечения графиков, а теперь найдём ординату. Для этого подставим $ x = 8 $ в любое из уравнений хоть в $ f(x) $, либо в $ g(x) $:

$$ f(8) = 2\cdot 8 - 5 = 16 - 5 = 11 $$

Итак, $ M (8;11) $ - является точкой пересечения графиков двух линейных функций.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M (8;11) $$

Случай двух нелинейных функций

Пример 3
Найти координаты точки пересечения графиков функций: $ f(x)=x^2-2x+1 $ и $ g(x)=x^2+1 $
Решение

Как быть с двумя нелинейными функциями? Алгоритм простой: приравниваем уравнения друг к другу и находим корни:

$$ x^2-2x+1=x^2+1 $$

Разносим по разным сторонам уравнения члены с $ x $ и без него:

$$ x^2-2x-x^2=1-1 $$

Найдена абцисса искомой точки, но её недостаточно. Ещё нехватает ординаты $ y $. Подставляем $ x = 0 $ в любое из двух уравнений условия задачи. Например:

$$ f(0)=0^2-2\cdot 0 + 1 = 1 $$

$ M (0;1) $ - точка пересечения графиков функций

Ответ
$$ M (0;1) $$

Если прямые пересекаются в точке , то её координаты являются решениемсистемы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение одной прямой.
2) Составить уравнение второй прямой.
3) Выяснить взаимное расположение прямых.
4) Если прямые пересекаются, то найти точку пересечения.

Пример 13.

Найти точку пересечения прямых

Решение : Точку пересечения целесообразно искать аналитическим методом. Решим систему:

Ответ :

П.6.4. Расстояние от точки до прямой

Перед нами прямая полоса реки и наша задача состоит в том, чтобы дойти до неё кратчайшим путём. Препятствий нет, и самым оптимальным маршрутом будет движение по перпендикуляру. То есть, расстояние от точки до прямой – это длина перпендикулярного отрезка.

Расстояние в геометрии традиционно обозначают греческой буквой «ро», например: – расстояние от точки «эм» до прямой «дэ».

Расстояние от точкидо прямой выражается формулой

Пример 14.

Найти расстояние от точки до прямой

Решение : всё что нужно - аккуратно подставить числа в формулу и провести вычисления:

Ответ :

П.6.5. Угол между прямыми.

Пример 15.

Найти угол между прямыми .

1. Проверяем перпендикулярны ли прямые:

Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.
2. Угол между прямыми найдём с помощью формулы:

Таким образом:

Ответ :

Кривые второго порядка. Окружность

Пусть на плоскости задана прямоугольная система координат 0ху.

Кривой второго порядка называется линия на плоскости, определяемая уравнением второй степени относительно текущих координат точки М(х, у, z). В общем случае это уравнение имеет вид:

где коэффициенты А, В, С, D, E, L – любые действительные числа, причем хотя бы одно из чисел А, B, С отлично от нуля.



1.Окружностью называется множество точек на плоскости, расстояние от которых до фиксированной точки М 0 (х 0 , у 0) постоянно и равно R. Точка М 0 называется центром окружности, а число R – ее радиусом

– уравнение окружности с центром в точке М 0 (х 0 , у 0) и радиусом R.

Если центр окружности совпадает с началом координат, то имеем:

– каноническое уравнение окружности.

Эллипс.

Эллипсом называется множество точек на плоскости, для каждой из которых сумма расстояний до двух данных точек есть величина постоянная (причем эта величина больше расстояний между данными точками). Данные точки называются фокусами эллипса .

– каноническое уравнение эллипса.

Отношение называется эксцентриситетом эллипса и обозначается: , . Так как , то < 1.

Следовательно, с уменьшением отношение стремится к 1, т.е. b мало отличается от а и форма эллипса становится ближе к форме окружности. В предельном случае при , получается окружность, уравнение которой есть

х 2 + у 2 = а 2 .

Гипербола

Гиперболой называется множество точек на плоскости, для каждой из которых абсолютная величина разности расстояний до двух данных точек, называемыхфокусами , есть величина постоянная (при условии, что эта величина меньше расстояния между фокусами и не равна 0).

Пусть F 1 , F 2 – фокусы, расстояние между ними обозначим через 2с, параметром параболы).

– каноническое уравнение параболы.

Заметим, что уравнение при отрицательном р также задает параболу, которая будет расположена слева от оси 0у. Уравнение описывает параболу, симметричную относительно оси 0у, лежащую выше оси 0х при р > 0 и лежащую ниже оси 0х при р < 0.

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель!

Продолжим знакомиться с геометрическими алгоритмами. На прошлом уроке мы нашли уравнение прямой линии по координатам двух точек. У нас получилось уравнение вида:

Сегодня мы напишем функцию, которая по уравнениям двух прямых линий будет находить координаты их точки пересечения (если такая имеется). Для проверки равенства вещественных чисел, будем использовать специальную функцию RealEq().

Точки на плоскости описываются парой вещественных чисел. При использовании вещественного типа операции сравнения лучше оформить специальными функциями.

Причина известна: на типе Real в системе программирования Паскаль нет отношения порядка, поэтому записи вида a = b, где a и b вещественные числа, лучше не использовать.
Сегодня мы введем в употребление функцию RealEq() для реализации операции “=” (строго равно) :

Function RealEq(Const a, b:Real):Boolean; {строго равно} begin RealEq:=Abs(a-b)<=_Eps End; {RealEq}

Задача. Заданы уравнения двух прямых: и . Найти точку их пересечения.

Решение. Очевидное решение состоит в том, чтобы решить систему уравнений прямых: Давайте перепишем эту системе несколько иначе:
(1)

Введем обозначения: , , . Здесь D – определитель системы, а - определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если , то система (1) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: , , которые называются формулами Крамера . Напомню, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.

В программном коде для проверки проверка равенства используется функция RealEq(). Вычисления над вещественными числами производятся с точностью до _Eps=1e-7.

Program geom2; Const _Eps: Real=1e-7;{точность вычислений} var a1,b1,c1,a2,b2,c2,x,y,d,dx,dy:Real; Function RealEq(Const a, b:Real):Boolean; {строго равно} begin RealEq:=Abs(a-b)<=_Eps End; {RealEq} Function LineToPoint(a1,b1,c1,a2,b2,c2: real; var x,y:real):Boolean; {Определение координат точки пересечения двух линий. Значение функции равно true, если точка пересечения есть, и false, если прямые параллельны. } var d:real; begin d:=a1*b2-b1*a2; if Not(RealEq(d,0)) then begin LineToPoint:=True; dx:=-c1*b2+b1*c2; dy:=-a1*c2+c1*a2; x:=dx/d; y:=dy/d; end else LineToPoint:=False End;{LineToPoint} begin {main} writeln("Введите коэффициенты уравнений: a1,b1,c1,a2,b2,c2 "); readln(a1,b1,c1,a2,b2,c2); if LineToPoint(a1,b1,c1,a2,b2,c2,x,y) then writeln(x:5:1,y:5:1) else writeln("Прямые параллельны."); end.

Мы составили программу, с помощью которой можно, зная уравнения линий, найти координаты их точки пересечения.

Если две прямые не параллельны, то они неукоснительно пересекутся в одной точке. Обнаружить координаты точки пересечения 2-х прямых дозволено как графическим, так и арифметическим методом, в зависимости от того, какие данные предоставляет задача.

Вам понадобится

  • – две прямые на чертеже;
  • – уравнения 2-х прямых.

Инструкция

1. Если прямые теснее начерчены на графике, обнаружьте решение графическим методом. Для этого продолжите обе либо одну из прямых так, дабы они пересеклись. После этого подметьте точку пересечения и опустите из нее перпендикуляр на ось абсцисс (как водится, ох).

2. При помощи шкалы делений, подмеченных на оси, обнаружьте значение х для этой точки. Если она находится на позитивном направлении оси (справа от нулевой отметки), то ее значение будет правильным, в отвратном случае – негативным.

3. Верно также обнаружьте ординату точки пересечения. Если проекция точки расположена выше нулевой отметки – она правильная, если ниже – негативная. Запишите координаты точки в виде (х, у) – это и есть решение задачи.

4. Если прямые заданы в виде формул у=kх+b, вы можете также решить задачу графическим методом: начертите прямые на координатной сетке и обнаружьте решение описанным выше методом.

5. Испробуйте обнаружить решение задачи, применяя данные формулы. Для этого составьте из этих уравнений систему и решите ее. Если уравнения даны в виде у=kх+b, примитивно приравняйте обе части с х и обнаружьте х. После этого подставьте значение х в одно из уравнений и обнаружьте у.

6. Дозволено обнаружить решение методом Крамера. В таком случае приведите уравнения к виду А1х+В1у+С1=0 и А2х+В2у+С2=0. Согласно формуле Крамера х=-(С1В2-С2В1)/(А1В2-А2В1), а у=-(А1C2-А2С1)/(А1В2-А2В1). Обратите внимание, если знаменатель равен нулю, то прямые параллельны либо совпадают и, соответственно, не пересекаются.

7. Если вам даны прямые в пространстве в каноническом виде, перед тем, как начать поиск решения, проверьте, не параллельны ли прямые. Для этого оцените показатели перед t, если они пропорциональны, скажем, x=-1+3t, y=7+2t, z=2+t и x=-1+6t, y=-1+4t, z=-5+2t, то прямые параллельны. Помимо того, прямые могут скрещиваться, в этом случае система не будет иметь решения.

8. Если вы узнали, что прямые пересекаются, обнаружьте точку их пересечения. Вначале приравняйте переменные из различных прямых, условно заменив t на u для первой прямой и на v для 2-й прямой. Скажем, если вам даны прямые x=t-1, y=2t+1, z=t+2 и x=t+1, y=t+1, z=2t+8 вы получите выражения типа u-1=v+1, 2u+1=v+1, u+2=2v+8.

9. Выразите из одного уравнения u, подставьте в другое и обнаружьте v (в данной задаче u=-2,v=-4). Сейчас, дабы обнаружить точку пересечения, подставьте полученные значения взамен t (без разницы, в первое либо второе уравнение) и получите координаты точки x=-3, y=-3, z=0.

Для рассмотрения 2-х пересекающихся прямых довольно рассмотрения их в плоскости, так как две пересекающиеся прямые лежат в одной плоскости. Зная уравнения этих прямых , дозволено обнаружить координату их точки пересечения .

Вам понадобится

  • уравнения прямых

Инструкция

1. В декартовых координатах всеобщее уравнение прямой выглидит так: Ax+By+C = 0. Пускай две прямые пересекаются. Уравнение первой прямой имеет вид Ax+By+C = 0, 2-й прямой – Dx+Ey+F = 0. Все показатели (A, B, C, D, E, F) обязаны быть заданы.Дабы обнаружить точку пересечения этих прямых надобно решить систему этих 2-х линейных уравнений.

2. Для решения первое уравнение комфортно умножить на E, а второе – на B. В итоге уравнения будут иметь вид: AEx+BEy+CE = 0, DBx+EBy+FB = 0. Позже вычитания второго уравнения из первого, получится: (AE-DB)x = FB-CE. Отсель, x = (FB-CE)/(AE-DB).По аналогии первое уравнение начальной системы дозволено умножить на D, второе – на A, после этого вновь из первого вычесть второго. В итоге, y = (CD-FA)/(AE-DB).Полученные значения x и y и будут координатами точки пересечения прямых .

3. Уравнения прямых также могут записываться через угловой показатель k, равный тангенсу угла наклона прямой. В этом случае уравнение прямой имеет вид y = kx+b. Пускай сейчас уравнение первой прямой – y = k1*x+b1, а 2-й прямой – y = k2*x+b2.

4. Если приравнять правые части этих 2-х уравнений, то получится: k1*x+b1 = k2*x+b2. Отсель легко получить, что x = (b1-b2)/(k2-k1). Позже подстановки этого значения x в всякое из уравнений, получится: y = (k2*b1-k1*b2)/(k2-k1). Значения x и y будут задавать координаты точки пересечения прямых .В случае, если две прямые параллельны либо сопадают, то они не имеют всеобщих точек либо имеют безмерно много всеобщих точек соответственно. В этих случаях k1 = k2, знаменатели для координат точек пересечения будут обращаться в нуль, следственно, система не будет иметь классического решения.Система может иметь только одно классическое решение, что безусловно, потому что две несовпадающие и не параллельные друг другу прямые могут иметь только одну точку пересечения .

Видео по теме