Квантовая физика для чайников! Лучшие эксперименты. Квантовая физика для детей

В 1803 году Томас Юнг направил пучок света на непрозрачную ширму с двумя прорезями. Вместо ожидаемых двух полосок света на проекционном экране он увидел несколько полос, как если бы произошла интерференция (наложение) двух волн света из каждой прорези. Фактически именно в этот момент зародилась квантовая физика, вернее вопросы у её основы. В XX и XXI веках было показано, что не только свет, но любая одиночная элементарная частица и даже некоторые молекулы ведут себя как волна, как кванты, будто проходя через обе щели одновременно. Однако если поставить у щелей датчик, который определяет, что именно происходит с частицей в этом месте и через какую именно щель она все-таки проходит, то на проекционном экране появляются только две полосы, словно факт наблюдения (косвенного влияния) рушит волновую функцию и объект ведет себя как материя. ( видео)

Принципа неопределенности Гейзенберга – фундамент квантовой физики!

Благодаря открытию 1927 года тысячи ученых и студентов повторяют один и тот же простой эксперимент, пропуская лазерный луч через сужающуюся щель. Логично, видимый след от лазера на проекционном экране становится все уже и уже вслед за уменьшением зазора. Но в определенный момент, когда щель становится достаточно узкой, пятно от лазера вдруг начинает становиться шире и шире, растягиваясь по экрану и тускнея пока щель не исчезнет. Это самое очевидное доказательство квинтэссенции квантовой физики - принципа неопределенности Вернера Гейзенберга, выдающегося физика-теоретика. Суть его в том, что чем точнее мы определяем одну из парных характеристик квантовой системы, тем более неопределенней становится вторая характеристика. В данном случае, чем точнее мы определяем сужающейся щелью координаты фотонов лазера, тем неопределеннее становится импульс этих фотонов. В макромире мы точно также можем измерить либо точное местоположение летящего меча, взяв его в руки, либо его направление, но никак не одновременно, так как это противоречит и мешает друг другу. ( , видео)

Квантовая сверхпроводимость и эффект Мейснера

В 1933 году Вальтер Мейснер обнаружил интересное явление в квантовой физике: в охлажденном до минимальных температур сверхпроводнике магнитное поле вытесняется за его пределы. Это явление получило название эффект Мейснера. Если обычный магнит положить на алюминий (или другой сверхпроводник), а затем его охладить жидким азотом, то магнит взлетит и зависнет в воздухе, так как будет «видеть» вытесненное из охлажденного алюминия свое же магнитное поле той же полярности, а одинаковые стороны магнитов отталкиваются. ( , видео)

Квантовая сверхтекучесть

В 1938 году Петр Капица охладил жидкий гелий до близкой к нулю температуры и обнаружил, что у вещества пропала вязкость. Это явление в квантовой физике получило название сверхтекучесть. Если охлажденный жидкий гелий налить на дно стакана, то он все равно вытечет из него по стенкам. Фактически, пока гелий достаточно охлажденный для него нет пределов, чтобы разлиться, вне зависимости от формы и размера емкости. В конце XX и начале XXI веков сверхтекучесть при определенных условиях была также обнаружена у водорода и различных газов. ( , видео)

Квантовый туннелинг

В 1960 году Айвор Джайевер проводил электрические опыты со сверхпроводниками, разделенными микроскопической пленкой непроводящего ток оксида алюминия. Выяснилось, что вопреки физике и логике часть электронов все равно проходит через изоляцию. Это подтвердило теорию о возможности квантового туннельного эффекта. Он распространяется не только на электричество, но и любые элементарные частицы, они же волны согласно квантовой физике. Они могут проходить препятствия насквозь, если ширина этих препятствий меньше длины волны частицы. Чем препятствие уже, тем чаще частицы проходят сквозь них. ( , видео)

Квантовая запутанность и телепортация

В 1982 году физик Ален Аспэ, будущий лауреат Нобелевской премии, направил два одновременно созданных фотона на разнонаправленные датчики определения их спина (поляризации). Оказалось, что измерение спина одного фотона мгновенно влияет на положение спина второго фотона, который становится противоположным. Так была доказана возможность квантовой запутанности элементарных частиц и квантовая телепортация. В 2008 году ученым удалось измерить состояние квантово-запутанных фотонов на расстоянии 144 километров и взаимодействие между ними все равно оказалось мгновенным, как если бы они были в одном месте или не было пространства. Считается, что если такие квантово-запутанные фотоны окажутся в противоположных участках вселенной, то взаимодействие между ними все равно будет мгновенным, хотя свет это же расстояние преодолевает за десятки миллиардов лет. Любопытно, но согласно Эйнштейну для летящих со скоростью света фотонов времени тоже нет. Совпадение ли это? Так не думают физики будущего! ( , видео)

Квантовый эффект Зенона и остановка времени

В 1989 году группа ученых под руководством Дэвида Вайнленда наблюдала за скоростью перехода ионов бериллия между атомными уровнями. Выяснилось, что сам факт измерения состояния ионов замедлял их переход между состояниями. В начале XXI века в подобном эксперименте с атомами рубидия удалось достичь 30-кратного замедления. Все это является подтверждением квантового эффект Зенона. Его смысл в том, что сам факт измерения состояния нестабильной частицы в квантовой физике замедляет скорость ее распада и в теории может его полностью остановить. ( , видео англ.)

Квантовый ластик с отложенным выбором

В 1999 году группа ученых под руководствам Марлана Скали направляла фотоны через две щели, за которыми стояла призма, конвертирующая каждый выходящий фотон в пару квантово-запутанных фотонов и разделяя их на два направления. Первое отправляло фотоны на основной детектор. Второе направление отправляла фотоны на систему 50%-отражателей и детекторов. Выяснилось, если фотон из второго направления достигал детекторы определяющие щель, из которой он вылетел, то основной детектор фиксировал его парный фотон как частицу. Если же фотон из второго направления достигал детекторы не определяющие щель, из которой он вылетел, то основной детектор фиксировал его парный фотон как волну. Не только измерение одного фотона отражалось на его квантово-запутанной паре, но и это происходило вне расстояния и времени, ведь вторичная система детекторов фиксировала фотоны позже основного, как если бы будущее определяло прошлое. Считается, что это самый невероятный эксперимент не только в истории квантовой физики, но и вполне в истории всей науки, так как он подрывает многие привычные основы мировоззрения. ( , видео англ.)

Квантовая суперпозиция и кот Шредингера

В 2010 году Аарон О’Коннелл поместил небольшую металлическую пластину в непрозрачную вакуумную камеру, которую охладил почти до абсолютного нуля. Затем он придал импульс пластине, чтобы она вибрировала. Однако датчик положения показал, что пластина вибрировала и была спокойна одновременно, что точно соответствовало теоретической квантовой физике. Этим впервые был доказан принцип суперпозиции на макрообъектах. В изолированных условиях, когда не происходит взаимодействия квантовых систем, объект может одновременно находиться в неограниченном количестве любых возможных положений, как если бы он больше не был материальным. ( , видео)

Квантовый Чеширский кот и физика

В 2014 году Тобиас Денкмайр и его коллеги разделили поток нейтронов на два пучка и провели серию сложных измерений. Выяснилось, что при определенных обстоятельствах нейтроны могут находиться в одном пучке, а их же магнитный момент в другом пучке. Таким образом был подтвержден квантовый парадокс улыбки Чеширского кота, когда частицы и их свойства могут находиться по нашему восприятию в разных частях пространства, как улыбка отдельно от кота в сказки «Алиса в стране чудес». В очередной раз квантовая физика оказалась загадочней и удивительней любой сказки! ( , видео англ .)

Спасибо за чтение! Теперь вы стали немного умнее и от этого наш мир чуточку посветлел. Поделитесь ссылкой на эту статью с друзьями и мир станет еще лучше!

Многим людям физика кажется такой далекой и запутанной, а квантовая - уж тем более. Но я хочу раскрыть для вас завесу этой великой тайны, потому что на деле все оказывается странно, но распутываемо.

А также квантовая физика - отличный предмет для разговора с умными людьми.

Квантовая физика - это просто

Для начала вам нужно начертить в голове одну большую линию между микромиром и макромиром, потому что эти миры совершенно различны. Все, что вы знаете о привычном себе пространстве и предметах в нем, является ложным и неприемлемым в квантовой физике.

Фактически, микрочастицы не имеют ни скорости, ни определенного положения, пока ученые на них не посмотрят. Это утверждение кажется нам просто абсурдным, таковым оно казалось и Альберту Эйнштейну, но даже великий физик пошел на попятную.

Дело в том, что проводившиеся исследования доказали, что посмотрев один раз частицу, которая занимала определенное положение, а затем отвернувшись и снова посмотрев, вы увидите, что эта частица уже заняла совершенно иное положение.

Эти шаловливые частицы

Все кажется простым, но когда мы смотрим на ту же частицу, она стоит на месте. То есть эти частицы движутся только тогда, когда мы не можем этого видеть.

Суть такова, что каждая частица (по теории вероятности) обладает шкалой вероятностей находиться в том или ином положении. И когда мы отворачиваемся, а затем снова поворачиваемся, то можем застать частицу в любом из ее возможных положений именно согласно шкале вероятности.

По исследованию частицу искали в разных местах, затем прекращали наблюдать за ней, а затем снова смотрели, как изменилось ее положение. Результат был просто ошеломительным. Подведя итоги, ученые действительно смогли составить шкалу вероятностей, где может находиться та или иная частица.

Например, нейтрон имеет возможность находиться в трех положениях. Проведя исследования, вы можете обнаружить, что в первом положении он будет находиться с вероятностью 15%, во втором - 60%, в третьем - 25%.

Эту теорию никто еще не смог опровергнуть, поэтому она является, как ни странно, самой правильной.

Макромир и микромир

Если мы возьмем предмет из макромира, то увидим, что он тоже обладает шкалой вероятности, но она совершенно другая. Например, вероятность того, что отвернувшись, вы найдете свой телефон на другом конце мира равна практически нулю, но она все равно существует.

Тогда спрашивается, как же так еще не было зафиксировано подобных случаев. Это объясняется тем, что вероятность настолько мала, что человечеству пришлось бы ждать столько лет, сколько еще не прожила наша планета и целая вселенная, чтобы увидеть подобное событие. Выходит, что ваш телефон почти со стопроцентной вероятностью окажется именно там, где вы его видели.

Квантовое туннелирование

Отсюда можно выйти на понятие квантового туннелирования. Это понятие о постепенном переходе одного предмета (это если очень грубо выражаться) в совершенно другое место без каких-либо внешних воздействий.

То есть начаться все может с одного нейтрона, который в один прекрасный момент попадет в ту самую почти нулевую вероятность находиться в совершенно ином месте, а чем больше нейтронов будет находиться в другом месте, тем выше будет становится вероятность.

Конечно, для такого перехода потребуется столько лет, сколько еще не прожила наша планета, но, согласно теории квантовой физики, квантовое туннелирование имеет место быть.

Прочтите также:

В данной статье мы дадим полезные советы по изучению квантовой физики для чайников . Ответим, какой должен быть подход в изучении квантовой физики начинающими .

Квантовая физика - это достаточно сложная дисциплина, которая не всем легко подается усвоению. Тем не менее, физика как предмет интересная и полезная, поэтому и квантовая физика (http://www.cyberforum.ru/quantum-physics/) находит своих фанатов, которые готовы ее изучить и получить в итоге практическую пользу. Для того, чтобы было проще усвоить материал, нужно начинать с самого начала, то есть с самых простых учебников квантовой физики для начинающих. Это позволит получить хорошую базу для знаний, и в то же время хорошо структурировать свои знания в голове.

Начинать самостоятельное обучение нужно с хорошей литературы. Именно литература является решающим фактором в процессе получения знаний и обеспечивает их качество. Особый интерес вызывает квантовая механика, и многие начинают свои изучения именно с нее. Физику должен знать каждый, потому что это наука о жизни, которая объясняет многие процессы, и делает их понятными для окружающих.

Учтите, что когда приступите к изучению квантовой физики, вы должны обладать знаниями математики и физики, так как без них вы просто не справитесь. Будет хорошо, если у вас будет возможность обращаться к преподавателю, чтобы найти ответы на возникшие вопросы. Если такой возможности не будет, можете попробовать разъяснить ситуацию на специализированных форумах. Форумы тоже могут сильно пригодиться в обучении.

Когда определитесь с выбором учебника, вы должны быть готовы к тому, что он достаточно сложный и его придется не просто читать, а вникать во всем том, что в нем написано. Чтобы по окончании обучения не возникла мысль, что это все ненужные никому знания, пытайтесь связать каждый раз теорию с практикой. Еще важно определить заранее цель с которой вы начали учить квантовую физику, для того чтобы предотвратить появление мысли о бесполезности полученных знаний. Люди делятся на две категории: люди, которые считают квантовую физику интересным и полезным предметом и те, которые так не считают. Выберите для себя, к какой категории относитесь вы и соответственно определите, есть ли квантовой физике место в вашей жизни или же нет. Можно всегда остаться на уровне начинающего в изучении квантовой физики, а можно добиться реальных успехов, все в ваших руках.

Выбирайте прежде всего действительно интересные и качественные материалы по физике. Некоторые из них вы можете найти по ссылкам ниже.
А на этом у вас пока всё! Изучайте квантовую физику интересно и не будьте чайником!

Тут у меня днями разговор состоялся на тему delayed choice quantum erasure , даже не столько дискуссия, сколько терпеливое объяснение мне моим замечательным френдом dr_tambowsky основ квантовой физики. Поскольку я физику в школе плохо учила, а на старости лет потянуло, то впитываю, как губка. Объяснения решила собрать в одном месте, может кому еще .

Для начала рекомендую посмотреть мультфильм для детей про интерференцию и обратить внимание на «глаз». Потому что фактически в нем вся загвоздка.

Затем можно начинать читать текст от dr_tambowsky , который я привожу ниже целиком или, кто умный и подкованный, может сразу читать это . А лучше и то, и другое.

Что такое интерференция.
Тут действительно много всяких терминов и понятий и они сильно перепутаны. Давай по порядку. Во-первых — интерференция как таковая. Примерам интерференции несть числа и разных интерферометров очень много. Конкретный эксперимент, который постоянно склоняют и часто используют в этой науке про erasure (в основном, потому что он простой и удобный) — это две щели, прорезанные рядышком, параллельно друг другу в непрозрачном экране. Для начала посветим на такую двойную прорезь светом. Свет — это же ж волна, правда? И интерференцию света мы наблюдаем постоянно. Прими на веру, что если посветить на эти две прорези, а с другой стороны поставить экран (или просто стенку), то на этом втором экране мы тоже увидим интерференционную картину — вместо двух ярких пятен света «прошедшего через прорези» на втором экране (стенке) будет забор из чередующихся ярких и тёмных полос. Отметим ещё раз, что это чисто волновое свойство: если мы будем швырять камешки, то те из них, которые попадут в прорези будут и дальше лететь прямо и будут ударять в стенку каждый за своей прорезью, то есть, мы увидим две независимых кучи камней (если они к стенке прилипнут, конечно 🙂), никакой интерференции.

Далее, помнишь, в школе учили про «корпускулярно-волновой дуализм»? Что когда всё очень маленькое и очень квантовое, то объекты — одновременно и частицы и волны? В одном из знаменитых экспериментов (эксперимент Штерна-Герлаха) в 20е годы прошлого века использовали такую же установку как описано выше, но вместо света светили… электронами. Ну, то есть, электроны ведь частицы, правда? То есть если их «кидать» на двойную прорезь, как камушки, то на стенке за прорезями мы увидим что? Ответ — не два отдельных пятна, а опять интерефенционную картину!! То есть электроны тоже могут интерферировать.

С другой стороны, выясняется, что и свет не совсем волна, но немножко и частица — фотон. То есть мы теперь такие умные, что понимаем — два эксперимента, описанных выше — суть одно и тоже. Мы швыряем на прорези (квантовые) частицы, и частицы на этих прорезях интерферируют — на стенке видны чередующиеся полосы («видны» — в смысле чем мы там фотоны или электроны регистрируем, собственно глаза для этого необязательны 🙂).

Теперь, вооружённые этой универсальной картиной, зададим следующий, более тонкий вопрос (внимание, очень важно!!):
Когда мы светим на прорези нашими фотонами/электронами/частицами — мы видим с другой стороны интерференционную картину. Прекрасно. Но что происходит с отдельным фотоном/электроном/пи-мезоном? [и давай с этого момента говорить — исключительно для удобства — только о фотонах]. Возможен ведь такой вариант: каждый фотон летит, как камушек, через свою прорезь, то есть обладает вполне определённой траекторией. Вот этот фотон летит через левую прорезь. А вон тот — через правую. Когда эти фотоны-камушки, проследовав по своим определённым траекториям, достигают стенки позади прорезей, они как то там друг с другом взаимодействуют, и в результате этого взаимодействия, уже на самой стенке, возникает интерференционная картина. Пока что ничто в наших экспериментах такой интерпретации не противоречит — ведь когда мы светим на прорезь ярким светом мы посылаем сразу много фотонов. Пёс их знает, что они там делают.

На этот важный вопрос у нас имеется ответ. Мы умеем бросать по одному фотону. Бросили. Подождали. Бросили следующий. Пристально глядим на стенку и замечаем, куда эти фотоны прилетают. Один-единственный фотон, конечно, не может создать наблюдаемую интерференционную картину в принципе — он один, и когда мы его регистрируем, мы можем его увидеть только в каком-то определённом месте, а не везде сразу. Однако, вернёмся к аналогии с камушками. Вот пролетел один камушек. Стукнулся о стенку позади одной прорези (той, через которую он пролетел, естественно). Вот другой — опять стукнулся позади прорези. Сидим. Считаем. Через какое-то время и бросив достаточно камушков, мы наберём распределение — мы увидим, что много камушков стукнулось о стенку позади одной прорези и много позади другой. И больше нигде. Делаем то же самое с фотонами — бросаем их по одному и считаем потихоньку, сколько же фотонов прилетело в каждое место на стенке. Медленно сходим с ума, потому что получившееся распределение частот ударов фотонов — вовсе не два пятна под соответствующими прорезями. Распределение это в точности повторяет интерференционную картину, которую мы видели, когда светили ярким светом. Но фотоны-то теперь прилетали по одному! Один — сегодня. Следующий — завтра. Они не могли взаимодействовать друг с другом на стенке. То есть, в полном соответствии с квантовой механикой, один, отдельный фотон одновременно является волной и ничто волновое ему не чуждо. У фотона в нашем эксперименте нет определённой траектории — каждый отдельный фотон проходит через обе щели сразу и как бы интерферирует сам с собой. Можем повторить эксперимент, оставив открытой только одну щель — тогда фотоны будут конечно кучковаться за ней. Закроем первую, откроем вторую, по-прежнему бросаем фотоны по одному. Кучкуются, ясное дело под второй, открытой, щелью. Открываем обе — получившееся распределение мест, в которых фотоны любят кучковаться, не является суммой распределений, полученных, когда только одна щель была открыта. Они теперь ещё между щелями кучкуются. А точнее, их излюбленные места кучкования теперь — это чередующиеся полосы. В этой — кучкуются, в следующей — нет, опять — да, тёмная, светлая. Ах, интерференция…

Что такое суперпозиция и спин.
Итак. Будем считать, что про интерференцию как таковую мы всё понимаем. Займёмся суперпозицией. Не знаю, как у тебя с квантовой механикой, извини. Если плохо, то придётся многое принимать на веру, в двух словах объяснить сложно.

Но в принципе, мы уже были где-то рядом — когда видели, что отдельный фотон пролетает как бы сразу через две щели. Можно сказать просто: у фотона нет траектории, волна и волна. А можно сказать, что фотон одновременно летит по двум траекториям (строго говоря, даже не по двум, конечно, а по всем сразу). Это — равносильное утверждение. В принципе, если следовать по этому пути до конца, то мы придём к «интегралу по траекториям» — Фейнмановской формулировке квантовой механики. Формулировка эта невероятно изящна и настолько же сложна, на практике ею пользоваться трудно, тем более использовать её для объяснения основ. Поэтому до конца не пойдём, а лучше помедитируем над фотоном, летящим «по двум траекториям сразу». В смысле классических понятий (а траектория — вполне себе хорошо определённое классическое понятие, либо камень летит в лоб, либо мимо), фотон находится в разных состояниях одновременно. Ещё раз, траектория — это даже не совсем то, что нам нужно, наши цели проще, я просто призываю осознать и прочувствиовать факт.

Квантовая механика говорит нам, что такая ситуация — правило, а не исключение. Любая квантовая частица может находиться (и как правило находится) в «нескольких состояниях» сразу. На самом деле, не нужно слишком серьёзно воспринимать это утверждение. Эти «несколько состояний» — это на самом деле наша классическая интуиция. Мы определяем разные «состояния» исходя из каких-то своих (внешних и классических) соображений. А квантовая частица живёт по своим законам. У неё есть состояние. Точка. Всё что утверждение о «суперпозиции» означает — это то, что это состояние может сильно отличаться от наших классических представлений. Мы вводим классическое понятие траектории и применяем его к фотону в том состоянии, в котором ему нравится быть. А фотон говорит — «извините, моё любимое состояние таково, что в отношении этих ваших траекторий я нахожусь на обеих сразу!». Это не значит, что фотон совсем не может быть в состоянии, в котором траектория (более или менее) определена. Закроем одну из прорезей — и можно, до какой то степени, говорить о том, что фотон летит через вторую по определённой траектории, которую мы хорошо понимаем. То есть, такое состояние в принципе существует. Откроем обе — фотон предпочитает быть в суперпозиции.

То же самое относится к другим параметрам. Например, собственному угловому моменту, или спину. Помнишь, про два электрона, которые могут сидеть вместе на одной s-орбитали — если у них при этом противоположные спины? Вот это как раз оно. И у фотона тоже есть спин. Спин фотона хорош тем, что в классике он на самом деле соответствует поляризации световой волны. То есть используя всякие поляризаторы и прочие кристаллы, которые у нас есть, можно манипулировать спином (поляризацией) отдельных фотонов буде они у нас появятся (а они появятся).

Так вот, спин. Спин-то у электона есть (в надежде, что орбитали и электроны тебе роднее, чем фотоны, так-то всё то же самое), но электрону абсолютно безразлично в каком «спиновом состоянии» находиться. Спин — это вектор и мы можем пытаться говорить «спин смотрит вверх». Или «спин смотрит вниз» (относительно какого-нибудь нами же выбранного направления). А электрон нам говорит: «плевал я на вас, я могу находиться на обеих траекториях в обоих спиновых состояниях сразу». Здесь опять-таки очень важно, что не много электронов находятся в разных спиновых состояниях, в ансамбле, один смотрит вверх, другой вниз, а каждый отдельный электрон находится в обоих состояниях сразу. Точно так же как не разные электроны проходят через разные прорези, а один электрон (или фотон) проходит через обе прорези сразу. Электрон может находиться в состоянии с определённым направлением спина, если его очень попросить, но сам он этого делать не станет. Полу-качественно ситуацию можно описать так: 1) есть два состояния, |+1> (спин вверх) и |-1> (спин вниз); 2) в принципе, это — кошерные состояния, в которых электрон может существовать; 3) однако если не прилагать специальных усилий, электрон «размажется» по обоим состояниям и его состояние будет что-то вроде |+1> + |-1>, состояние, в котором электрон не обладает определённым направлением спина (совсем как траектория 1+траектория 2, правда?). Это и есть «суперпозиция состояний».

Про коллапс волновой функции.
Нам осталось совсем немного — понять что такое измерение и «коллапс волновой функции». Волновая функция — это то что мы выше написали, |+1> + |-1>. Просто описание состояния. Можно для простоты говорить о самом состоянии, как таковом, и о его «коллапсе», неважно. Происходит вот что: летит себе электрон в таком вот неопределённом состоянии духа, то ли он вверх, то ли вниз, то ли и то и другое сразу. Тут подбегаем мы с каким-нибудь устрашающего вида прибором и давай измерять направление спина. В данном конкретном случае достаточно сунуть электрон в магнитное поле: те электроны, у которых спин смотрит вдоль направления поля должны отклоняться в одну сторону, те у которых против поля — в другую. Мы сидим с другой стороны и потираем ручонки — видим в какую сторону электрон отклонился и сразу знаем, вверх у него смотрит спин или вниз. Фотоны можно совать в поляризационный фильтр — если поляризация (спин) +1 — фотон проходит, если -1, то нет.

Но позвольте — ведь у электрона не было определённого направления спина до измерения? Вот в этом вся фишка. Определённого — не было, но он был как бы «смешан» из двух состояний сразу, и в каждом из этих состояний направление очень даже было. В процессе измерения мы заставляем электрон принять решение, кем ему быть и куда смотреть — вверх или вниз. В вышеописанной ситуации мы, конечно, в принципе не можем предсказать заранее какое решение примет данный конкретный электрон, когда он влетит в магнитное поле. С вероятностью 50% он может решить «вверх», с такой же вероятностью — «вниз». Но уж как только он это решит — он находится в состоянии с определённым направлением спина. В результате нашего «измерения»! Это и есть «коллапс» — до измерения волновая функция (пардон, состояние) была |+1> + |-1>. После того как мы «измерили» и увидели, что электрон отклонился в определённую сторону — его направление спина определено и его волновая функция стала просто |+1> (или |-1>, если отклонился в другую). То есть состояние «сколлапсировало» на одну из своих составляющих; «подмешивания» второй составляющей больше нет и в помине!

В значительной степени этому было посвящено пустое философствование в исходной записи, и этим мне не нравится конец мультика. Там просто нарисован глаз и у неискушённого зрителя может возникнуть во-первых иллюзия некоей антропоцентричности процесса (мол, нужен наблюдатель, чтобы провести «измерение»), во-вторых его неинвазивности (ну, мы же просто смотрим!). Мои представления на эту тему были изложены выше. Во-первых, «наблюдатель» как таковой не нужен, конечно. Достаточно привести квантовую систему в контакт с большой, классической системой и всё произойдёт само собой (электроны будут влетать в магнитное поле и решать кем им быть независимо от того сидим мы с другой стороны и наблюдаем или нет). Во-вторых, неинвазивное классическое измерение квантовой частицы невозможно в принципе. Нарисовать глаз легко, а что значит «посмотреть на фотон и узнать куда он полетел»? Чтобы посмотреть нужно чтобы в глаз попали фотоны, желательно — много. Как можно так устроить, чтобы много фотонов прилетели и рассказали нам всё о состоянии одного несчастного фотона, состоянием которого мы интересуемся? Посветить на него фонариком? И что от него после этого останется? Ясно, что мы очень сильно повлияем на его состояние, возможно до такой степени, что ему и в одну из прорезей уже лезть не захочется. Это всё не так интересно. Но до интересного мы уже, наконец, добрались.

Про парадокс Эйнштейна-Подольского-Розена и когерентные (entangled) пары фотонов
Мы теперь знаем про суперпозицию состояний, но до сих пор мы говорили только об одной частице. Исключительно для простоты. Но всё же, что если частицы у нас две? Можно приготовить пару частиц во вполне себе квантовом состоянии, так что их общее состояние описывается одной, общей волновой функцией. Это, конечно, не просто — два произвольных фотона в соседних комнатах или электрона в соседних пробирках друг про друга и знать не знают, поэтому их можно и нужно описывать совершенно независимо. Поэтому как раз можно считать энергию связи, скажем, одного электрона на одном протоне в атоме водорода, совершенно не интересуясь другими электронами на марсе или даже на соседних атомах. Но если специально постараться, то квантовое состояние охватываюшее две частицы сразу можно создать. Это будет называться «когерентное состояние», применительно к парам частиц и всяким квантовым erasures и компютерам это ещё называют entangled state.

Двигаемся дальше. Мы можем знать (в силу ограничений, накладываемых процессом приготовления этого когерентного состояния), что, скажем, полный спин нашей системы из двух частиц равен нулю. Ничего страшного, мы же знаем, что спины двух электронов на s-орбитали обязаны быть антипараллельны, то есть полный спин — ноль, и это нас совершенно не пугает, правда? Чего мы не знаем — это куда смотрит спин конкретной частицы. Мы только знаем, что куда бы он не смотрел, спин второй должен смотреть в другую сторону. То есть, если мы обозначим наши две частицы (А) и (Б), то состояние может быть, в принципе, такое: |+1(А), -1(Б)> (А смотрит вверх, Б вниз). Это — разрешённое состояние, налагаемых ограничений оно не нарушает. Другая возможность — |-1(А), +1(Б)> (наоборот, А вниз, Б вверх). Тоже возможное состояние. Ещё не напоминает состояния, которые мы чуть раньше записывали для спина одного единственного электрона? Потому что наша система из двух частиц, пока она квантовая и когерентная, точно также может (и будет) находиться в суперпозиции состояний |+1(А); -1(Б)> + |-1(А); +1(Б)>. То есть, обе возможности реализованы одновременно. Как обе траектории фотона или оба направления спина одного электрона.

Измерять такую систему гораздо увлекательнее, чем отдельный фотон. Действительно, предположим, что мы измеряем спин только одной частицы, А. Мы уже поняли, что измерение — для квантовой частицы тяжёлый стресс, её состояние в процессе измерения сильно поменяется, произойдёт коллапс… Всё так, но — в данном-то случае есть ещё вторая частица, Б, которая намертво с А связана, у них волновая функция общая! Предположим, что мы измерили направление спина А и увидели, что оно +1. Но у А нет своей собственной волновой функции (или другими словами, своего собственного, независимого состояния), чтобы она сколлапсировала к |+1>. Всё что у А есть — это состояние «переплетённое» (entangled) с Б, выписанное выше. Если измерение А даёт +1 и мы знаем, что спины А и Б антипараллельны, мы знаем что спин Б смотрит вниз (-1). Волновая функция пары коллапсирует к чему может, а может она только к |+1(А); -1(Б)>. Других возможностей выписанная волновая функция нам не предоставляет.

Пока ничего? Подумаешь, полный спин сохраняется? Теперь представим себе, что мы создали такую пару А, Б и дали этим двум частицам разлетаться в разные стороны, оставаясь когерентными. Одна (А) долетела до Меркурия. А другая (Б), скажем, до Юпитера. В этот самый момент мы случились на Меркурии и измерили направление спина А. Что произошло? В этот же самый момент мы узнали направление спина Б и изменили волновую функцию Б! Обрати внимание, что это совсем не то же что в классике. Пускай два разлетающихся камня вращаются вокруг своей оси и пускай мы точно знаем, что они вращаются в противоположные стороны. Если мы измерим направление вращения одного, когда он достигнет Меркурия, мы тоже узнаем направление вращения второго, где бы он к тому моменту не оказался, хоть на Юпитере. Но эти камни всегда вращались в определённую сторону, до всяких наших измерений. И если кто-то измерит камень летящий к Юпитеру, то он(а) получит тот же самый и вполне определённый ответ, независимо от того, измерили мы что-то на Меркурии или нет. С нашими фотонами ситуация совершенно иная. Ни один из них не имел вообще никакого определённого направления спина до измерения. Если бы кто-то без нашего участия решил измерить направление спина Б где-нибудь в районе Марса, то он получил бы что? Правильно, с вероятностью 50% он увидел бы +1, с вероятностью 50% -1. Такое у Б состояние, суперпозиция. Если же этот кто-то решит измерить спин Б немедленно после того как мы уже измерили спин А, увидели +1 и вызвали коллапс *всей* волновой функции,
то он получит в результате измерения только -1, с вероятностью 100%! Только в момент нашего измерения А, наконец, решил кем ему быть и «выбрал» направление спина — и этот выбор мгновенно повлиял на *всю* волновую функцию и на состояние Б, который в этот момент уже находится чёрт знает где.

Вот эта-то неприятность и называется «нелокальность квантовой механики». Также известна как парадокс Эйнштейна-Подольского-Розена (EPR paradox) и, в общем, то что происходит в erasure с этим связано. Может быть я чего то недопонимаю, конечно, но на мой вкус erasure инетерсен тем, что это как раз эскпериментальная демострация нелокальности.

Упрощенно, эсксперимент с erasure может выглядеть так: создаём когерентные (entangled) пары фотонов. По одной: пара, потом следующая, и т.д. В каждой паре один фотон (А) летит в одну сторону, другой (Б) в другую. Всё как мы уже обсуждали чуть выше. На пути фотона Б ставим двойную прорезь и смотрим, что там за этой прорезью на стенке вырисовывается. Вырисовывается интерференционная картина, потому что каждый фотон Б, как мы знаем, летит по обеим траекториям, через обе прорези сразу (мы ещё помним про интерференцию, с которой мы начали эту историю, правда?). То, что Б ещё когерентно связан с А и имеет общую с А волновую функцию ему довольно фиолетово. Усложняем эксперимент: одну прорезь прикрываем фильтром, который пропускает только фотоны со спином +1. Вторую прикрываем фильтром, который пропускает только фотоны со спином (поляризацией) -1. Продолжаем наслаждаться интерференционной картиной, потому что в общем состоянии пары А,Б (|+1(А); -1(Б)> + |-1(А);+1(Б)>, как мы помним), присутствуют состояния Б и с тем и с другим спином. То есть «часть» Б может пройти через один фильтр/прорезь, часть — через другой. Так же как раньше одна «часть» летела по одной траектории, другая по другой (это, конечно, фигура речи, но факт остаётся фактом).

Наконец, кульминация: где-нибудь на меркурии, или чуть поближе, на другом конце оптического стола, мы ставим поляризационный фильтр на пути фотонов А, а за фильтром детектор. Пускай, для определённости, этот новый фильтр пропускает только фотоны со спином +1. Каждый раз когда срабатывает детектор, мы знаем что пролетел фотон А со спином +1 (спин -1 не пройдёт). Но это означает, что волновая функция всей пары сколлапсировала и у «брата» нашего фотона, у фотона Б, в этот момент осталось только одно возможное состояние -1. Всё. Фотону Б «нечем» теперь пролезать через, прорезь покрытую фильтром, пропускающим только поляризацию +1. У него просто не осталось такой составляюшей. «Узнать» этот фотон Б очень просто. Мы ведь создаём пары по одной. Когда мы регистрируем фотон А, прошедший через фильтр, мы записываем время, в которое он пришёл. Пол-второго, например. Значит, его «брат» Б прилетит на стенку тоже в пол-второго. Ну или в 1:36, если ему лететь чуть дальше и, следовательно, дольше. Там мы тоже записываем времена, то есть можем сопоставить кто есть кто и кто кому родственник.

Так вот, если мы теперь посмотрим какая картинка вырисовывается на стенке, мы не обнаружим никакой интерференции. Фотон Б из каждой пары проходит либо через одну прорезь, либо через другую. На стенке — два пятна. Теперь, убираем фильтр с пути фотонов А. Интерференционная картина восстанавливается.

…и наконец про delayed choice
Совсем паскудной ситуация становится, когда фотону А лететь до своего фильтра/детектора дольше, чем фотону Б до прорезей. Мы производим измерение (и заставляем А решить, а волновую функцию сколлапсировать) после того как Б должен был бы уже долететь до стенки и создать интерференционную картину. Однако, пока мы измеряем А, даже «позже, чем следует», интерференционная картина для фотонов Б всё равно пропадает. Убираем фильтр для А — восстанавливается. Это уже — delayed erasure. Не могу сказать, что я хорошо понимаю с чем это едят.

Поправки и уточнения.
Всё было правильно, с поправкой на неизбежные упрощения, до тех пор, пока мы не построили прибор с двумя entangled фотонами. Сначала интерференция у фотона Б есть. С фильтрами, похоже, не получится. Закрывать нужно пластинками, которые меняют поляризацию с линейной на круговую. Это уже сложнее обяснить 😦 Но главное не это. Главное, что когда мы так закрываем прорези разными фильтрами, то интерференция пропадает. Не в тот момент, когда мы измеряем фотон А, а сразу. Хитрая фишка состоит в том, что поставив фильтры пластинки мы «пометили» фотоны Б. Другими словами, фотоны Б несут на себе дополнительную информацию, позволяющую узнать по какой именно траектории они пролетели. *Если* мы измерим фотон А, то мы сможем узнать по какой именно траектории пролетел Б, значит и интерференции у Б не будет. Тонкость состоит в том, что физически «измерять» А не обязательно! Тут я в прошлый раз грубо ошибся. Не нужно измерять А, чтобы интерференция пропала. Если *можно* измерить и узнать по какой из траекторий пролетел фотон Б, то уже в этом случае интерференции не будет.

На самом деле, это ещё можно пережить. Там, по ссылке ниже народ как-то несколько беспомощно руками разводит, но по-моему (может быть я опять неправ? 😉) объяснение такое: сунув в прорези фильтры мы уже сильно изменили систему. Неважно, зарегистрировали мы реально поляризацию или траекторию по которой фотон прошёл или махнули в последний момент рукой. Важно что мы всё «приготовили» для измерения, уже повлияли на состояния. Поэтому, собственно «измерять» (в смысле сознательного человекоподобного наблюдателя, принесшего градусник и записавшего результат в журнал) ничего не нужно. Всё в некотором смысле (в смысле воздействия на систему) уже «измерено». Утверждение обычно формулируется так: «*если* мы измерим поляризацию фотона А, то мы будем знать поляризацию фотона Б, а следовательно и его траекторию, ну а раз фотон Б летит по определённой траектории, то интерференции не будет; мы можем даже не проводить измерение фотона А — достаточно того, что это измерение возможно, фотон Б знает о том, что его можно измерить и отказывается интерферировать». Есть в этом некоторая мистификация. Ну да, отказывается. Просто потому что систему так приготовили. Если в системе есть дополнительная информация (есть способ) определить по какой из двух траекторий пролетел фотон, то и интерференции не будет.

Если я тебе скажу, что я всё устроил так, чтобы фотон летел только через одну прорезь, ты ведь сразу поймешь что интерференции не будет? Можешь бежать проверять («измерять») и убеждаться, что я правду говорю, а можешь и так поверить. Если я не соврал, то интерференции не будет безотносительно того бросишься ты меня проверять или нет 🙂 Соответственно, фраза «можно измерить» на деле означает «система приготовлена таким специальным образом что…». Приготовлена и приготовлена, то есть в этом месте ещё коллапса никакого нет. Есть «помеченные» фотоны и отсутствие интерференции.

Вот дальше — почему, собственно, erasure это всё называется — нам говорят: а давайте-ка подействуем на систему так, чтобы «стереть» эти метки с фотонов Б — тогда они снова начнут интерферировать. Интересный момент, к которому мы уже подходили, хотя и в ошибочной модели, состоит в том, что фотоны Б можно не трогать, и пластинки в прорезях оставить. Можно подёргать за фотон А и так же как при коллапсе, изменение его состояния вызовет (нелокально) изменение полной волновой функции системы так, что информации, достаточной для определения через какую щель прошёл фотон Б, у нас больше не будет. То есть, вставляем на пути фотона А поляризатор — интерференция фотонов Б восстанавливается. С delayed всё то же самое — делаем так, что фотону А лететь до поляризатора дольше, чем Б до прорезей. И всё равно если на пути у А есть поляризатор, то Б интерферирует (хотя как бы «до того» как А долетел до поляризатора)!

Feed. You can , or from your own site.

Здравствуйте дорогие читатели. Если вы не хотите отставать от жизни, быть по-настоящему счастливым и здоровым человеком, вы должны знать о тайнах квантовой современной физики, хоть немного представлять до каких глубин мироздания докопались сегодня ученые. Вам некогда вдаваться в глубокие научные подробности, а хотите постигнуть лишь суть, но увидеть красоту неизведанного мира, тогда эта статья: квантовая физика для обычных чайников или можно сказать для домохозяек как раз для вас. Я постараюсь объяснить, что такое квантовая физика, но простыми словами, показать наглядно.

"Какая связь между счастьем, здоровьем и квантовой физикой?"- спросите вы.

Дело в том, что она помогает ответить на многие непонятные вопросы, связанные с сознанием человека, влияния сознания на тело. К сожалению, медицина, опираясь на классическую физику, не всегда нам помогает быть здоровым. А психология не может нормально сказать, как обрести счастье.

Только более глубокие познания мира помогут нам понять, как же по-настоящему справиться с болезнями и где обитает счастье. Это знание находятся в глубоких слоях Вселенной. На помощь нам приходит квантовая физика. Скоро вы все узнаете.

Что изучает квантовая физика простыми словами

Да, действительно квантовую физику очень сложно понять из-за того, что она изучает законы микромира. То есть мир на более глубоких его слоях, на очень малых расстояниях, там, куда очень сложно заглянуть человеку.

А мир, оказывается, ведет себя там очень странно, загадочно и непостижимо, не так как мы привыкли.

Отсюда вся сложность и непонимание квантовой физики.

Но после прочтения этой статьи вы раздвинете горизонты своего познания и посмотрите на мир совсем по-другому.

Кратко об истории квантовой физики

Все началось в начале 20 века, когда ньютоновская физика не могла объяснить многие вещи и ученые зашли в тупик. Тогда Максом Планком было введено понятие кванта. Альберт Эйнштейн подхватил эту идею и доказал, что свет распространяется не непрерывно, а порциями – квантами (фотонами). До этого же считалось, что свет имеет волновую природу.


Но как оказалось позже любая элементарная частица, это не только квант, то есть твердая частица, а также волна. Так появился корпускулярно-волновой дуализм в квантовой физике, первый парадокс и начало открытий загадочных явлений микромира.

Самые интересные парадоксы начались, когда был проведен знаменитый эксперимент с двумя щелями, после которого загадок стало намного больше. Можно сказать, что квантовая физика началась с него. Давайте его рассмотрим.

Эксперимент с двумя щелями в квантовой физике

Представьте себе пластину с двумя щелями в виде вертикальных полос. За этой пластиной поставим экран. Если направить свет на пластину, то на экране мы увидим интерференционную картину. То есть чередующиеся темные и яркие вертикальные полосы. Интерференция это результат волнового поведения чего-либо, в нашем случае света.


Если вы пропустите волну воды через два отверстия расположенных рядом, вы поймете что такое интерференция. То есть свет получается вроде как имеет волновую природу. Но как доказала физика, вернее Эйнштейн, он распространяется частицами-фотонами. Уже парадокс. Но это ладно, корпускулярно-волновым дуализмом нас уже не удивить. Квантовая физика говорит нам, что свет ведет себя как волна, но состоит из фотонов. Но чудеса только начинаются.

Давайте перед пластиной с двумя прорезями поставим пушку, которая будет испускать не свет, а электроны. Начнем стрелять электронами. Что мы увидим на экране за пластиной?

Электроны ведь это частицы, значит поток электронов, проходя через две щели, должны оставлять на экране всего две полосы, два следа напротив щелей. Представили себе камушки, пролетающие сквозь две щели и ударяющие об экран?

Но что мы видим на самом деле? Всю ту же интерференционную картину. Каков вывод: электроны распространяются волнами. Значит электроны это волны. Но ведь это элементарная частица. Опять корпускулярно-волновым дуализм в физике.

Но можно предположить, что на более глубоком уровне электрон это частица, а когда эти частицы собираются вместе, они начинают вести себя как волны. Например, морская волна это волна, но ведь она состоит из капель воды, а на более мелком уровне из молекул, а затем из атомов. Хорошо, логика твердая.

Тогда давайте будем стрелять из пушки не потоком электронов, а выпускать электроны по отдельности, через какой-то промежуток времени. Как если бы мы пропускали через щели не морскую волну, а плевались бы отдельными каплями из детского водяного пистолета.

Вполне логично, что в таком случае разные капли воды попадали бы в разные щели. На экране за пластиной можно было бы увидеть не интерференционную картину от волны, а две четкие полосы от удара напротив каждой щели. То же самое мы увидим, если кидать мелкие камни, они, пролетая сквозь две щели, оставляли бы след, словно тень от двух отверстий. Давайте же теперь стрелять отдельными электронами, чтобы увидеть эти две полосы на экране от ударов электронов. Выпустили один, подождали, второй, подождали и так далее. Ученые квантовой физики смогли сделать такой эксперимент.

Но ужас. Вместо этих двух полос получаются все те же интерференционные чередования нескольких полос. Как так? Такое может случиться, если бы электрон пролетал одновременно через две щели, а за пластиной, как волна сталкивался бы сам с собой и интерферировал. Но такое не может быть, ведь частица не может находиться в двух местах одновременно. Она или пролетает сквозь первую щель или сквозь вторую.

Вот тут начинаются поистине фантастические вещи квантовой физики.

Суперпозиция в квантовой физике

При более глубоком анализе ученые выясняют что любая элементарная квантовая частица или тот же свет(фотон) на самом деле могут находиться в нескольких местах одновременно. И это не чудеса, а реальные факты микромира. Так утверждает квантовая физика. Вот поэтому, стреляя из пушки отдельной частицей, мы видим результат интерференции. За пластиной электрон сталкивается сам с собой и создает интерференционную картину.

Обычные нам объекты макромира находятся всегда в одном месте, имеют одно состояние. Например, вы сейчас сидите на стуле, весите, допустим, 50 кг, имеете частоту пульса 60 ударов в минуту. Конечно, эти показания изменятся, но изменятся они через какое-то время. Ведь вы не можете одновременно быть дома и на работе, весить 50 и 100 кг. Все это понятно, это здравый смысл.

В физике микромира же все по-другому.

Квантовая механика утверждает, а это уже подтверждено экспериментально, что любая элементарная частица может находиться одновременно не только в нескольких точках пространства, но также иметь в одно и то же время несколько состояний, например спин.

Все это не укладывается в голову, подрывает привычное представление о мире, старые законы физики, переворачивает мышление, можно смело сказать сводит с ума.

Так мы приходим к пониманию термина "суперпозиции" в квантовой механике.

Суперпозиция означает, что объект микромира может одновременно находиться в разных точках пространства, а также иметь несколько состояний одновременно. И это нормально для элементарных частиц. Таков закон микромира, каким бы странным и фантастическим он не казался.

Вы удивлены, но это только цветочки, самые необъяснимые чудеса, загадки и парадоксы квантовой физики еще впереди.

Коллапс волновой функции в физике простыми словами

Затем ученые решили выяснить и посмотреть более точно, реально ли электрон проходит через обе щели. Вдруг он проходит через одну щель, а затем каким-то образом разделяется и создает интерференционную картину, проходя через нее. Ну, мало ли. То есть нужно поставить какой-нибудь прибор возле щели, который бы точно зафиксировал прохождение электрона через нее. Сказано, сделано. Конечно, осуществить это сложно, нужен не прибор, а что-то другое, чтобы увидеть прохождение электрона. Но ученые сделали это.

Но в итоге результат ошеломил всех.

Как только мы начинаем смотреть, через какую щель проходит электрон, так он начинает вести себя не как волна, не как странное вещество, которое одновременно находится в разных точках пространства, а как обычная частица. То есть начинает проявлять конкретные свойства кванта: находится только в одном месте, проходит через одну щель, имеет одно значение спина. На экране появляется не интерференционная картина, а простой след напротив щели.

Но как такое возможно. Как будто электрон шутит, играет с нами. Сначала он ведет себя как волна, а затем, после того, как мы решили посмотреть прохождение его через щель, проявляет свойства твердой частицы и проходит только через одну щель. Но так оно и есть в микромире. Таковы законы квантовой физики.

Ученые увидели еще одно загадочное свойство элементарных частиц. Так появились в квантовой физике понятия неопределенность и коллапс волновой функции.

Когда электрон летит к щели, он находится в неопределенном состоянии или как мы сказали выше в суперпозиции. То есть ведет себя как волна, находится одновременно в разных точках пространства, имеет сразу два значения спина (у спина всего два значения). Если бы мы его не трогали, не пытались смотреть на него, не выясняли, где именно он находится, не измеряли бы значение его спина, он бы так и пролетел как волна одновременно через две щели, а значит, создал интерференционную картину. Его траектория и параметры квантовая физика описывает с помощью волновой функции.

После того, как мы произвели измерение (а произвести измерение частицы микромира можно только взаимодействуя с ней, например, столкнуть с ней другую частицу), то происходит коллапс волновой функции.

То есть теперь электрон находится точно в каком-то одном месте пространства, имеет одно значение спина.


Можно сказать элементарная частица как призрак, она как бы есть, но одновременно ее нет в одном месте, и может с определенной вероятностью оказаться в любом месте в пределах описания волновой функцией. Но как только мы начинаем с ней контактировать, она из призрачного объекта превращается в реальное осязаемое вещество, которое ведет себя как обычные, привычные для нас предметы классического мира.

"Вот это фантастика"- скажете вы. Конечно, но чудеса квантовой физики только начинаются. Самое невероятное еще впереди. Но давайте немного отдохнем от обилия информации и вернемся к квантовым приключениям в другой раз, в другой статье. А пока поразмышляйте о том, что вы сегодня узнали. К чему могут привести такие чудеса? Ведь они окружают нас, это свойство нашего мира, хоть и на более глубоком уровне. А мы все еще думаем, что живем в скучном мире? Но выводы сделаем позже.

Я попытался рассказать об основах квантовой физике кратко и понятно.

Но если вы что-то не поняли, тогда посмотрите вот этот мультик про квантовую физику, про эксперимент с двумя щелями, там также все рассказывается понятным, простым языком.

Мультфильм про квантовую физику:

Или можно смотреть вот этот видео, все станет на свои места, квантовая физика ведь очень интересна.

Видео о квантовой физике:

И как вы раньше об этом не знали.

Современные открытия в квантовой физике меняют наш привычный материальный мир.