Получение сверхтвердых материалов. Синтетические сверхтвердые материалы и покрытия

Синтетический алмаз (АС) и кубический нитрид бора (CBN) (торговые марки- эльбор, кубонит, боразон) относятся к сверхтвёрдым материалам (СТМ), твердость которых превышает твердость традиционных абразивных материалов.

Алмаз – самый твёрдый из известных науке материалов, состоящий практически только из чистого углерода (С), атомы которого расположены в виде узкой, высокопрочной трёхмерной матрицы. Алмазы представлены моно- и макрокристаллическими структурами с совершенной спаянностью.
В 1954 году учёными американской компанией «General Electrics» удалось синтезировать из графита алмазы в лабораторных условиях. В 1960 году синтез алмазов был освоен в СССР. В настоящее время объём производства синтетических алмазов в несколько раз превышает объём добычи природных алмазов.Большинство синтетических алмазов имеют монокристаллическую структуру. Возможные формы (морфология) кристаллов синтетических алмазов простирается от кубической формы до формы восьмигранника.Анизотропия твёрдости алмазных граней определяет наименее износоустойчивые направления: в плоской сетке октаэдра – направления, соответствующие высотам треугольных граней; в плоской сетке куба – направления, параллельные сторонам кубических граней. Наибольшей твёрдостью обладают кубические грани. В свою очередь, твёрдость октаэдрических граней больше твёрдости ромбододекаэдрических. Синтетические монокристаллические алмазы по сравнению с природными имеют более острые грани и меньшие радиуса скруглений вершин режущих кромок, чем объясняются их лучшие режущие свойства. Алмаз также имеет наибольший из всех известных материалов модуль упругости (модуль Юнга Е = 900000 МПа). При наибольшей из всех известных материалов прочности на разрыв, предел прочности алмазов при сжатии и изгибе небольшой. Обладая совершенной спаянностью, кристаллы алмаза скалываются, образуя в зависимости от дефектов строения, ровные, ступенчатые или раковистые изломы. Алмазы не смачиваются водой, но прилипают к жировым смесям. Этим свойством руководствуются при выборе типа смазочно-охлаждающей жидкости при шлифовании алмазным инструментом (масляные СОЖ оказывают смазывающее действие на алмазные зёрна, снижая работу трения). Алмаз характеризуется высокой теплопроводностью: она в два-пять раз выше, чем у металлов. Высокая теплопроводность алмаза позволяет быстрее отводить тепло с поверхности обрабатываемых изделий. Отдельные металлы, например, железо, при температуре более 800 0С частично растворяют алмаз, ограничивая его применение.

Кроме монокристаллических алмазов синтезируются поликристаллические алмазы «карбонадо» и «баллас» идентичные по структуре соответствующим природным алмазам. Путём спекания синтетических алмазов в гранулы цилиндрической или сегментной форм тёмного цвета производятся также поликристаллические алмазы типа «спеки».

Кубический нитрид бора – это искуственный абразивный материал, в основном, состава BN с плотной кубической упаковкой атомов бора и азота в тетраэдрической координации.
Кубический нитрид бора не встречается в природе. Впервые его синтез был произведён в 1957 году американской компанией «General Electrics» в результате экспериментальных поисков новых абразивных материалов. Синтез кубического нитрида бора осуществляется таким же образом, как и производство синтетических алмазов.

Кубический нитрид (КНБ) бора получают из гексагонального нитрида бора a-BN (плотность 2,34 г/см3) при высоких давлении и температуре. Переход гексагонального нитрида бора в кубический сопровождается уплотнением кристаллической решётки в 11,5 раза. На долю основной составляющей кубического нитрида бора (b-BN) приходится более 92 %. Цвет кристаллов изменяется от белого и жёлтого до аметистового и чёрного.
Вследствие более комплексной атомной структуры кубический нитрид бора имеет большее количество форм кристаллов. С одной стороны, возможные формы кристаллов кубического нитрида бора простираются от кубической формы до формы восьмигранника, как у алмазов, с другой стороны, возможные формы кристаллов кубического нитрида бора простираются от формы восьмигранника до формы четырёхгранника.
Шлифовальные материалы из КНБ имеют два вида: с зёрнами с моно- и макрокристаллическими (поликристаллическими) структурами и микрокристаллического гранулометрического состава, полученными спеканием микропорошков. гексагонального или вюрцитоподобного нитрида бора (ВНБ).

Материалы высокой твердости используются главным образом в механизмах, подверженных абразивному изнашиванию.

Из простых веществ большой твердостью обладают лишь алмазы и бор.

Подавляющее большинство веществ высокой твердости — тугоплавкие химические соединения (карбиды, нитриды, бориды, силициды).

Из-за высокой хрупкости твердых соединений и трудности их обработки изготовление деталей из них в большинстве случаев нецелесообразно или экономически невыгодно. Основная область их применения — твердые составляющие композиционных материалов и покрытия, наносимые разными способами.

Сверхтвердые материалы

К ним относятся кубические модификации углерода (алмаз) и нитрида бора.

Синтетические алмазы в виде порошков используют для приготовления абразивного инструмента и абразивных наст, в виде плотных поликристаллических образований (Баллас, Карбонадо) для производства абразивного инструмента, резцов, волок.

Спеканием смеси микропорошков синтетических и природных алмазов получают плотные поликристаллические образования алмаза — СВ и Дисмит.

Алмазы марки СВ применяют для буровых коронок и долот, а также для резки неметаллических материалов.

Дисмит применяют для изготовления горнобурового инструмента, режущего инструмента (резцы, сверла и другие), используемого для обработки цветных металлов и сплавов, пластмасс, стеклопластиков.

Кубический нитрид бора

Получают только синтетическим путем из гексагональной модификации. Применяется главным образом для изготовления абразивного инструмента. По твердости он уступает алмазу, но существенно превосходит его по теплостойкости.

В США кубический нитрид бора выпускается под названием Боразон, в СНГ — Эльбор и Кубонит. Марки их соответственно ЛО и КО обычной прочности и ЛР и КР — повышенной.

Разновидности поликристаллического материала на основе Эльбора и Кубонита — Эльбор -Р, Гексанит — Р, ИСМИТ, ПНТБ, КОМПОЗИТ и других… выпускаются в виде пластин различной формы. Изготавливают из них металлорежущий инструмент, применяемых при обработке труднообрабатываемых закаленных сталей, чугунов и сплавов с твердостью HRC>40. Стойкость такого инструмента в 10…20 раз больше стойкости твердосплавного, производительность повышается в 2…4 раза.

Самый твердый материал на Земле, который издавна применяется в качестве режущего инструмента, – природный алмаз. Алмаз – минерал, разновидность самородного углерода. Как инструментальный материал используется непрозрачный алмаз. Твердость алмаза (HV » 60–100 ГПа) при комнатной температуре гораздо выше твердости карбидов или окислов, и в условиях абразивного износа он незаменим. Плотность
3500–3600 кг/м 3 . Теплопроводность поликристаллов алмаза превышает теплоп­роводность меди.

Природный алмаз является монокристаллом и позволяет получать практически идеальные острые и прямолинейные режущие кромки. С развитием электроники, прецизионного машино- и приборостроения возрастает применение резцов из природных алмазов для точения зеркально чистых поверхностей оптических деталей, дисков памяти, барабанов копировальной техники и т. п.

Алмаз может быть эффективно применен для обработки медных коллекторов – съема небольшого слоя меди при тонкой подаче и очень высокой скорости резания. При этом обеспечивается низкая шероховатость и высокая точность обработанной поверхности. Алмазным инструментом эффективно производится чистовая обработка поршней из алюминиевых сплавов с большим содержанием кремния, в то время как при обработке таких поршней твердосплавными резцами большие кристаллы кремния вызывают быстрый износ инструмента. Алмазом хорошо обрабатывается керамика и частично спеченные карбиды. Алмаз может быть применен для правки шлифовальных кругов и т. п.

Алмаз изнашивается при взаимодействии с железом при высокой температуре, и поэтому не рекомендуется применять алмазные инструменты для обработки сталей. Теплостойкость алмаза относительно небольшая – 700–750 °С. Алмазы имеют недостаточную ударную вязкость, острые кромки алмазного инструмента легко выкрашиваются и разрушаются. Высокая стоимость и дефицитность природных алмазов ограничивает их применение в качестве инструментального материала.

Потребность в менее дорогих и дефицитных сверхтвердых материалах привела к тому, что в 1953–1957 годах в США и в 1959 году в СССР методом каталитического синтеза при высоких статических давлениях и температурах из гексагональных фаз графита (С) были получены мелкие частицы кубических фаз синтетического алмаза. Цвет от черного до белого, в зависимости от технологии изготовления синтетический алмаз может быть полупрозрачным или непрозрачным.

Размеры кристаллов обычно от нескольких десятых долей до 1–2 мм. Более крупные плотные шаровидные поликристаллические образования синтетических алмазов, предназначенные для лез­вийных инструментов, были получены в промышленных условиях в начале 1970-х годов. Синтетические поликристаллические алмазы имеют высокий модуль упругости Е = 700–800 ГПа, высокий предел прочности на сжатие s –В » 7–8 ГПа, но низкий предел прочности на изгиб s И » 0,8–1,1 ГПа.


По аналогичной технологии из бора и азота получена модификация нитрида бора BN, по структуре и свойствам напоминающая синтетический алмаз. Кристаллическая решетка – кубическая, твердость несколько ниже, чем у алмаза, но все же очень велика: 40–45 ГПа, т. е. более чем вдвое выше, чем у твердых сплавов, и почти вдвое выше твердости режущей керамики. Поликристаллический кубический нитрид бора (ПКНБ) иногда называют «боразон», «кубанит», «эльбор». Модуль упругости у нитрид бора
Е = 700–800 ГПа, предел прочности на сжатие примерно такой же, как у твердых сплавов: s –В » 2,5 –5 ГПа, а более низкий, чем у твердых сплавов и у поликристаллических алмазов, предел прочности на изгиб: s И » 0,6–0,8 ГПа.

Теплостойкость кубического нитрида бора значительно выше, чем у синтетических и природных алмазов: около 1000–1100 °С. По этой причине, а также в связи с меньшим химическим родством с углеродом, кубический нитрид бора более эффективен, чем алмаз и твердые сплавы при чистовой обработке сталей резанием, особенно при резании закаленных сталей высокой твердости с небольшими сечениями срезаемого слоя.

В основе технологии изготовления поликристаллов лежат два различных процесса: фазовый переход вещества из одного состояния в другое (собственно синтез) или спекание мелких частиц заранее синтезированного порошка ПСТМ. В нашей стране первым способом получают поликристаллический кубический нитрид бора (ПКНБ) марок: композит 01 (эльбор РМ) и композит 02 (бельбор), а также поликристаллический алмаз (ПКА) марок АСПК (карбонадо) и АСЕ (баллас).

Поликристаллические сверхтвердые материалы (ПСТМ) систематизируются по таким определяющим признакам, как состав основы поликристаллов, способы получения, характеристика исходного материала. Вся гамма поликристаллов разделяется на пять основных групп: ПСТМ на основе алмаза (СПА), ПСТМ на основе плотных модификаций нитрида бора (СПНБ), композиционные сверхтвердые материалы (КСТМ), двухслойные сверхтвердые композиционные материалы (ДСКМ).

Поликристаллы на основе синтетического алмаза можно разделить на четыре разновидности:

1) Поликристаллы, получаемые спеканием мелких алмазных порошков в чистом виде или после специальной предварительной обработки для активации процесса спекания. Изготовленные по такой схеме поликристаллы представляют собой, как правило, однофазный продукт. Примером могут служить мегадаймонд, карбонит.

2) Поликристаллы алмаза типа СВ. Они представляют собой гетерогенный композит, состоящий из частиц алмаза, скрепленных связкой – второй фазой, которая располагается в виде тонких прослоек между кристаллами алмаза.

3) Синтетические карбонады типа АСПК, получаемые путем воздействия на углеродосодержащее вещество со значительным количеством катализатора одновременно высокого давления и высокой температуры. АСПК обладают меньшей твердостью и прочностью, чем поликристаллы первых двух разновидностей.

4) Поликристаллы алмаза, получаемые пропиткой алмазного порошка металлическим связующим при высоких давлениях и температурах. В качестве связки используются никель, кобальт, железо, хром.

Существует несколько разновидностей ПСТМ на основе нитрида бора:

1) поликристаллы, синтезируемые из гексагонального нитрида бора (ГНБ) в присутствии растворителя ВМ г ВМ сф (типичным представителем является композит 01);

2) поликристаллы, получаемые в результате прямого перехода гексагональной модификации в кубическую BNrBN (композит 02);

3) поликристаллы, получаемые в результате превращения вюрцитоподобной модификации в кубическую BN g ® ВМ дф. Поскольку полнота перехода регулируется параметрами спекания, то к этой группе относятся материалы с заметно отличающимися свойствами (композит 10, композит 09);

4) поликристаллы, получаемые спеканием порошков кубического нитрида бора (КНБ) с активирующими добавками (композит 05-ИТ, киборит
и др.).

ПСТМ на основе нитрида бора, незначительно уступая алмазу по твердости, отличаются высокой термостойкостью, стойкостью к циклическому воздействию высоких температур и, что особенно важно, более слабым химическим взаимодействием с железом, являющимся основным компонентом большинства материалов, подвергаемых в настоящее время обработке резанием.

Однородные по объемукомпозиционные сверхтвердые материалы получают спеканием смеси порошков синтетического алмаза и кубического нитрида бора. Сюда относят материалы типа ПКНБ – АС, СВ, СВАБ. К классу композиционных относят также алмазосодержащие материалы на основе твердых сплавов. Из материалов этой группы, хорошо зарекомендовавших себя в эксплуатации, следует отметить «Славутич» (из природных алмазов) и «Твесал» (из синте­тических алмазов).

Принципиальной особенностью двухслойных композиционных поликристаллических материалов является то, что спекание порошков сверхтвердых материалов производится при высоких температурах и давлениях на подложке из твердых сплавов на основе карбидов вольфрама, титана, тантала, в результате чего образуется слой ПСТМ толщиной 0,5–1 мм, прочно связанный с материалом подложки. Алмазоносный слой может содержать компоненты подложки.

Сверхтвердые материалы

Сверхтвёрдые материа́лы - группа веществ, обладающих высочайшей твердостью, к которой относят материалы, твёрдость и износустойчивость которых превышает твёрдость и износоустойчивость твёрдых сплавов на основе карбидов вольфрама и титана с кобальтовой связкой карбидотитановых сплавов на никель-молибденовой связке. Широко применяемые сверхтвердые материалы: электрокорунд , оксид циркония , карбид кремния , карбид бора , боразон , диборид рения , алмаз . Сверхтвёрдые материалы часто применяются в качестве материалов для абразивной обработки .

В последние годы пристальное внимание современной промышленности направлено к изысканию новых типов сверхтвёрдых материалов и ассимиляции таких материалов, как нитрид углерода, сплав бор-углерод-кремний , нитрид кремния, сплав карбид титана-карбид скандия, сплавы боридов и карбидов подгруппы титана с карбидами и боридами лантаноидов.


Wikimedia Foundation . 2010 .

Смотреть что такое "Сверхтвердые материалы" в других словарях:

    Сверхтвердые керамические материалы - – композиционные керамичес­кие материалы, получаемые введением различных легирующих добавок и наполнителей в исходный нитрид бора. Структура таких материалов образо­вана прочно связанными мельчайшими кристаллитами и, следовательно, они являются… …

    Группа веществ, обладающих высочайшей твердостью, к которой относят материалы, твёрдость и износоустойчивость которых превышает твёрдость и износоустойчивость твёрдых сплавов на основе карбидов вольфрама и титана с кобальтовой связкой… … Википедия

    Древесноволокнистые сверхтвердые плиты СМ-500 - – изготовляют прессованием молотой древесной массы, обработанной полимерами, чаще всего фенолоформальдегидными, с добавками высыхающих масел и некоторых других компонентов. Выпускают длиной 1,2 м, шириной 1,0 м и толщиной 5 6 мм. Полы из таких… … Энциклопедия терминов, определений и пояснений строительных материалов

    порошковые материалы - консолидированные материалы, полученные из порошков; в литературе часто используется наряду с «порошковыми материалами» термин «спеченные материалы», т.к. один из основных способов консолидации порошков спекание. Порошковые… … Энциклопедический словарь по металлургии

    - (фр. abrasif шлифовальный, от лат. abradere соскабливать) это материалы, обладающие высокой твердостью, и используемые для обработки поверхности различных материалов. Абразивные материалы используются в процессах шлифования, полирования,… … Википедия

    В Википедии есть статьи о других людях с такой фамилией, см. Новиков. В Википедии есть статьи о других людях с именем Новиков, Николай. Новиков Николай Васильевич … Википедия

    Шлифовáние механическая или ручная операция по обработке твёрдого материала (металл, стекло, гранит, алмаз и др.). Разновидность абразивной обработки, которая, в свою очередь, является разновидностью резания. Механическое шлифование обычно… … Википедия

    - (от ср. век. лат. detonatio взрыв, лат. detonо гремлю), распространение со сверхзвуковой скоростью зоны быстрой экзотермич. хим. р ции, следующей за фронтом ударной волны. Ударная волна инициирует р цию, сжимая и нагревая детонирующее в во… … Химическая энциклопедия

    Неорганическая химия раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических… … Википедия

    - … Википедия

Книги

  • Инструментальные материалы в машиностроении: Учебник. Гриф МО РФ , Адаскин А.М.. В учебнике представлены материалы для изготовления режущего, штампового, слесарно-монтажного, вспомогательного, контрольно-измерительного инструмента: инструментальные, быстрорежущие и…

В машиностроении для изготовления режущих и абразивных инструментов широко используются природные и синтетические минералы. Из природных минералов наиболее широко применяются алмаз, кварц, корунд, из синтетических - алмазы, кубический нитрид бора, электрокорунд, карбид бора, карбид кремния. По многим показателям синтетические материалы превосходят природные. Основные свойства синтетических сверхтвердых материалов (СТМ), применяемых при обработке резанием, приведены в таблице 2.18.

Таблица 2.18

Основные свойства синтетических сверхтвердых материалов

Наименование СТМ

Наименование

Твердость, HV, ГПа

Теплостойкость, °С

Баллас (АСБ)

Синтетический алмаз

Карбонадо (АСПК)

Синтетический алмаз

Синтетический алмаз

Композит 01

Композит 02 (05)

Композит 03

Композит 09

Композит 10

Гексаиит-Р

Композит КП1 (КПЗ)

Для лезвийной обработки применяются природные, синтетические алмазы и кубический нитрид бора КНБ. Для абразивной - природные и синтетические алмазы, кубический нитрид бора, корунд и электрокорунд, карбид кремния, карбид бора, окись алюминия, окись хрома, окись железа, а также некоторые горные породы.

К естественным сверхтвердым природным материалам относится алмаз. Название «алмаз» происходит от арабского al-mas, что переводится как «твердейший», или греческого adamas (адамас), что в переводе означает «непреодолимый, несокрушимый, непобедимый». В конце XVIII в. было установлено, что алмаз состоит из углерода. Алмазы встречаются в виде отдельных хорошо выраженных кристаллов или же в виде скопления кристаллических зерен и многочисленных сросшихся кристаллов (агрегатов). Единицей измерения величины алмаза является карат (от араб, kirat), что составляет 0,2 г.

Следует отметить, что в металлообработке природные алмазы применяются весьма редко. Как правило, для этих целей используют борт (выброшенные за борт) - так называют все алмазы, не идущие на изготовление украшений. Для изготовления режущих инструментов (резцов, сверл) применяются кристаллы алмаза весом 0,2-0,6 карата. Алмазные порошки употребляются для изготовления алмазных кругов. Кристаллы алмаза закрепляются в державке путем пайки серебряным припоем или механическим креплением.

При заточке алмаз предварительно извлекается из стержня и перешлифовывается в технологической державке на специальных станках с помощью чугунных дисков, шаржированных смесью алмазного порошка с оливковым маслом.

Поликристаллы синтетических алмазов выпускаются типа баллас по ТУ 2-037-19-70 (АСБЗ и АСБ4 для изготовления выглаживателей и АСПК2 - для резцов). Они представляют собой поликристаллические образования размером до 12 мм прочно связанных кристаллов, обладающих высокой прочностью и износостойкостью.

Области применения СТМ:

  • для алмазов (А) - обработка цветных металлов и их сплавов, а также дерева, абразивных материалов, пластмасс, твердых сплавов, стекла, керамики;
  • для КНБ - обработка черных металлов, сырых и закаленных, а также специальных сплавов на основе никеля и кобальта.

В настоящее время в промышленности в основном используют синтетические А, получаемые из углерода (в форме графита) при воздействии высоких давления и температуры, при этом гексагональная гранецентрированная решетка графита превращается в кубическую гранецентрированную решетку алмаза. Температуру и давление, необходимые для структурных превращений, определяют из диаграммы состояния «графит - алмаз».

Так как бор и азот располагаются по обеим сторонам углерода в таблице Менделеева, путем соответствующей химической реакции можно получить соединение этих элементов, т. е. нитрид бора, который имеет графитообразную гексагональную кристаллическую решетку с приблизительно одинаковым числом атомов бора и азота, расположенных попеременно. Аналогично графиту гексагональный нитрид бора (ГНБ) имеет слоистую рыхлую структуру и может превращаться в КНБ. Это процесс описывается диах"раммой состояния ГНБ - КНБ. За счет добавления специальных растворителей-катализаторов (обычно нитриды металлов) интенсивность превращения увеличивается, а давление и температура процесса снижаются соответственно до 6 ГПа и 1500°С. В процессе превращения кристаллы КНБ увеличиваются. При нагреве отдельные кристаллы КНБ спекаются между собой в зонах контакта и образуют «поликристаллическую» массу. Для интенсификации спекания добавляют также растворители. Кроме того, вся спекаемая масса должна находиться при определенных давлении и температуре, чтобы предотвратить обратное превращение твердых кристаллов КНБ в мягкие гексагональные кристаллы.

В результате спекания получают конгломерат КНБ, в котором произвольно ориентированные анизотропные кристаллы соединяются между собой, образуя изотропную массу большого объема. Затем из этой массы получают пластины для режущих инструментов, фильеры для волочения проволоки, инструменты для правки шлифовальных кругов, износостойкие детали и др.

Как режущий материал алмаз обладает высокой стойкостью и низким коэффициентом трения в паре с металлом, что обеспечивает высокое качество поверхности. Алмазы применяются (природные и синтетические) для точного точения и растачивания деталей из цветных сплавов. Для обработки углеродосодержащих металлов (чугу- нов, сталей) алмазы не используются, так как из-за химического сродства обрабатываемого и инструментального материалов происходит интенсивное изнашивание алмазных резцов и науглероживание поверхностного слоя заготовки.

Материалы на основе нитрида бора представляют собой кристаллическую кубическую (КНБ) или вюрцито- подобную (ВНБ) модификацию соединения бора с азотом, синтезируемую по технологии, аналогичной производству синтетических алмазов. За счет варьирования технологическими факторами получают несколько отличных друг от друга материалов на этой основе - эльбор, кубонит, гексанит и др. Поликристаллы на основе нитрида бора получают размером до 12 мм, применяются они для обработки сталей и сплавов на основе железа.

В отечественном производстве материалы на основе нитрида бора для абразивного инструмента выпускают под маркой эльбор, а для лезвийного инструмента - композит.

Появление каждой качественно новой группы инструментальных материалов характерно прежде всего существенным, скачкообразным увеличением скоростей резания и поэтому всегда сопровождается глубокими изменениями в станкостроении и технологии механической обработки.

Скорость резания - важнейший фактор интенсификации обработки материалов резанием с применением инструмента из синтетических сверхтвердых материалов в условиях, когда резервы существенного повышения скоростей резания традиционных инструментальных материалов практически исчерпаны.

Вместе с тем, как показывают последние исследования, скорость резания является к тому же весьма действенным фактором решения проблемы стружкодробления - одной из труднейших проблем в металлообработке.

При высокой скорости резания работа почти полностью превращается в тепло и образуется сегментная стружка, у которой сегменты разделяются хрупкой узкой перемычкой сильно деформированного металла; фактически образуется короткая дробленая стружка. Автоматизация процессов обработки материалов со снятием стружки и дальнейший рост скоростей резания неразрывны.

Резкое увеличение скорости резания при прочих равных условиях обеспечивают соответствующее увеличение минутной подачи инструмента, т. е. производительности процесса, а также уменьшение силы резания, наклепа и шероховатости обработанной поверхности, т. е. точности и качества обработки. Установлено, кроме того, что при увеличении скорости резания в определенных пределах возрастает надежность работы инструмента из СТМ; это принципиально важно применительно к автоматизированному оборудованию.

Как правило, часть имеющегося резерва повышения скорости резания при переходе от твердосплавного инструмента к инструменту из СТМ используется для уменьшения толщины срезаемого слоя. Например, при повышении скорости фрезерования чугуна в 10 раз минутная подача может быть увеличена не в 10, а в 4 раза с соответствующим уменьшением в 2,5 раза подачи на оборот. Это дает дополнительное существенное уменьшение силы резания и шероховатости поверхности.

Из материалов, получаемых спеканием алмазных зерен, в настоящее время выпускают поликристаллы СВ, СВС, дисмит, СВБН, карбонит.

Поликристаллы марки АСБ имеют шаровидную форму диаметром около 6-6,5 мм, четко выраженную радиальнолучистую структуру. Кристаллы балласа образуют блочное строение и разные размеры по сечению образца: в центре более мелкие, чем на периферии. Их величина находится в пределах 10-300 мкм.

Алмазы марки АСПК имеют форму цилиндра диаметром 2-4,5 мм, высотой 3-5 мм, структура их также радиально-лучистая, но более тонко сформированная и совершенная. Размеры зерен меньше (до 200 мкм).

Структура алмазов типа СВ поликристаллическая, двухфазная. Общее количество примесей не превышает 2%.

По возрастанию прочности алмазные поликристаллы располагаются следующим образом: АСБ, АСПК, СВ, дисмит.

Алмазный инструмент может эксплуатироваться, в отличие от инструмента из композита, и на низких скоростях, присущих твердосплавному инструменту, обеспечивая многократное повышение стойкости. При фрезеровании скорости могут быть увеличены в 1,5-2 раза. Глубина резания древесностружечных материалов определяется шириной фрез или пил.

Эффективность использования СА при обработке высокотвердых материалов можно иллюстрировать на примере точения твердых сплавов ВК10, ВК10С, ВС15, ВК20 резцами из АСПК. Производительность такой обработки в десять раз выше производительности шлифования при стабильном обеспечении заданного качества.

Обрабатываемый материал

Скорость резания, V , м/мин

Подача, S , мм/об

Глубина резания, t, мм

Алюминий и алюминиевые сплавы

Алюминиевые сплавы (10-20% кремния)

Медь и медные сплавы (бронзы, латуни, баббиты и др.)

Различные композиты (пластмассы, пластики, стеклопластики, углепластики, твердая резина)

Полуспеченные керамика и твердые сплавы

Спеченные твердые сплавы

Древесностружечные материалы

Горные породы (песчаник, гранит)

Высокую износостойкость выявляют инструменты из АСПК и АСБ при точении абразивосодержащих материалов, широко распространенных высококремнистых и медных сплавов, стеклопластиков, пластической керамики, пресс-материалов и др. Она в десять и более раз выше, чем у твердосплавных.

Накоплен значительный опыт точения и растачивания резцами из АСПК заготовок из алюминиевых сплавов АЛ-2, АЛ-9, АЛ-25, АК-6, АК-9, АК-12М2, ВКЖЛС-2, титановых сплавов ВТ6, ВТ22, ВТ8, ВТЗ-1, стеклопластиков, цветных металлов, дерева.

Поликристаллы АСБ характеризуются высокой работоспособностью при точении высококремнистого алюминиевого сплава АК-21, АЛ-25, сплава на основе меди Л62, при обработке ЛС59-1, бронзы, стеклопластиков СТ, СВАМ, АГ и др.