Как зависит сопротивление проводника от температуры. Зависимость электрического сопротивления от температуры

Одна из характеристик любого проводящего электрический ток материала - это зависимость сопротивления от температуры. Если ее изобразить в виде графика на где по горизонтальной оси отмечаются промежутки времени (t), а по вертикальной - значение омического сопротивления (R), то получится ломаная линия. Зависимость сопротивления от температуры схематично состоит из трех участков. Первый соответствует небольшому нагреву - в этом время сопротивление изменяется очень незначительно. Так происходит до определенного момента, после которого линия на графике резко идет вверх - это второй участок. Третья, последняя составляющая - это прямая, уходящая вверх от точки, на которой остановился рост R, под относительно небольшим углом к горизонтальной оси.

Физический смысл данного графика следующий: зависимость сопротивления от температуры у проводника описывается простым до тех пор, пока величина нагрева не превысит какое-то значение, характерное именно для данного материала. Приведем абстрактный пример: если при температуре +10°C сопротивление вещества составляет 10 Ом, то до 40°C значение R практически не изменится, оставаясь в пределах погрешности измерений. Но уже при 41°C возникнет скачок сопротивления до 70 Ом. Если же дальнейший рост температуры не прекратится, то на каждый последующий градус придутся дополнительные 5 Ом.

Данное свойство широко используется в различных электротехнических устройствах, поэтому закономерно привести данные по меди как одному из самых распространенных материалов в Так, для медного проводника нагрев на каждый дополнительный градус приводит к росту сопротивления на полпроцента от удельного значения (можно найти в справочных таблицах, приводится для 20°C, 1 м длины сечением 1 кв.мм).

При возникновении в металлическом проводнике появляется электрический ток - направленное перемещение элементарных частиц, обладающих зарядом. Ионы, находящиеся в узлах металла, не в состоянии долго удерживать электроны на своих внешних орбитах, поэтому они свободно перемещаются по всему объему материала от одного узла к другому. Это хаотичное движение обусловлено внешней энергией - теплом.

Хотя факт перемещения налицо, оно не является направленным, поэтому не рассматривается в качестве тока. При появлении электрического поля электроны ориентируются в соответствии с его конфигурацией, формируя направленное движение. Но так как тепловое воздействие никуда не исчезло, то хаотично перемещающиеся частицы сталкиваются с направленными полем. Зависимость сопротивления металлов от температуры показывает величину помех прохождению тока. Чем больше температура, тем выше R проводника.

Очевидный вывод: снижая степень нагрева, можно уменьшить и сопротивление. Явление сверхпроводимости (около 20°K) как раз и характеризуется существенным снижением теплового хаотичного движения частиц в структуре вещества.

Рассматриваемое свойство проводящих материалов нашло широкое применение в электротехнике. Например, зависимость от температуры используется в электронных датчиках. Зная ее значение для какого-либо материала, можно изготовить терморезистор, подключить его к цифровому или аналоговому считывающему устройству, выполнить соответствующую градуировку шкалы и использовать в качестве альтернативы В основе большинства современных термодатчиков заложен именно такой принцип, ведь надежность выше, а конструкция проще.

Кроме того, зависимость сопротивления от температуры дает возможность рассчитывать нагрев обмоток электродвигателей.

§3. Зависимость сопротивления проводника от температуры. Сверхпроводники

С увеличением температуры сопротивление проводника возрастает по линейному закону

где R 0 - сопротивление при t =0° С; R - сопротивление при температуре t , α - термический коэффициент сопротивления, показывает как меняется сопротивление проводника при изменении температуры на 1 градус. Для чистых металлов при не очень низких температурах , т.е. можно записать

При определенных температурах (0,14-20 К), называемых «критическими» сопротивление проводника резко уменьшается до 0 и металл переходит в сверхпроводящее состояние. Впервые в 1911 г. Это обнаружил Камерлинг-Оннес для ртути. В 1987 г. разработаны керамики, переходящие в сверхпроводящее состояние при температурах превышающих 100 К, так называемые высокотемпературные сверхпроводники - ВТСП.

§4 Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т.е. электроны слабо связанные с ионами кристаллической решетки металла. Наличие свободных электронов объясняется тем, что при образовании кристаллической решетки металла при сближении изолированных атомов валентные электроны, слабо связанные с атомными ядрами, отрываются от атома металла, становятся "свободными", обобществленными, принадлежащими не отдельному атому, а всему веществу, и могут перемещаться по всему объему. В классической электронной теории эти электроны рассматриваются как электронный газ, обладающий свойствами одноатомного идеального газа.

Электроны проводимости в отсутствии электрического поля внутри металла хаотически двигаются и сталкиваются с ионами кристаллической решетки металла. Тепловое движение электронов, являясь хаотическим, не может, привести к возникновению тока. Средняя скорость теплового движения электронов

при Т = 300 К.

2. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Выразим силу и плотность тока через скорость v упорядоченного движения электронов в проводнике.

За время dt через поперечное сечение S проводника пройдет N электронов

, ;

следовательно, даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов , обуславливавшего электрический ток, значительно меньше их скорости теплового движения .

длина цепи, с = 3·10 8 м/с - скорость света в вакууме. Электрический ток возникает в цепи практически одновременно с ее замыканием.

2. Средняя длина свободного пробега электронов λ по порядку величины должна быть равна периоду кристаллической решетки металла λ ≅ 10 -10 м.

3. С ростов температуры увеличивается амплитуда колебаний ионов кристаллической решетки и электрон чаше сталкивается с колеблющимися ионами, поэтому его длина свободного пробега уменьшается, а сопротивление металла растет,

Недостатки классической теории электропроводности металлов:

1. (1)

т.к. ~ , n и λ ≠ f (T ) ρ ~ ,

т.е. из классической теории электропроводности следует, что удельное сопротивление пропорционально корню квадратному из температуры, а из опыта следует, что оно линейно зависит от температуры, ρ ~ Т

2. Дает неправильное значение молярной теплоемкости металлов. Согласно закону Дюлонга и Пти С μ = 3 R , а по классической теории С = 9 / 2 R =С μ ионной решетки = 3 R + С μ дноатомного электронного газа = 3/2 R .

3. Средняя длина свободного пробега электронов из формулы (1) при подстановке экспериментального значения ρ и теоретического значения дает 10 -8 , что на два порядка больше средней длины пробега принимаемой в теории (10 -10).

§5. Работа и мощность тока. Закон Джоуля -Ленца

Т.к. заряд переносится в проводнике под действием электроста-тического поля, то его работа равна

МОЩНОСТЬ - работа, совершаемая в единицу времени

[Р]=Вт (Ватт).

Если ток проходит по неподвижному проводнику, то вся работа тока идет на нагревание металлического проводника, и по закону сохранения энергии

Закон Джоуля-Ленца.

УДЕЛЬНОЙ МОЩНОСТЬЮ тока называется количество теплоты, выделенное в единице объема, проводника за единицу времени.

Закон Джоуля-Ленца в дифференциальной форме.

§6 Правила Кирхгофа для разветвленных цепей

Любая точка разветвленной цепи, в которой сходится не менее трех проводников, с током называется УЗЛОМ. При этом ток, входящий в узел, считается положительным, а выходящий - отрицательный,

ПЕРВОЕ ПРАВИЛО КИРХГОФА: алгебраическая сумма токов, сходящихся в узле, равна нулю.

Первое правило Кирхгофа вытекает из закона сохранения заряда (заряд, вошедший в узел, равен вышедшему заряду).

ВТОРОЕ ПРАВИЛО КИРХГОФА: в либом замкнутом контуре произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС. встречающихся в контуре.

При расчете сложных цепей пстоянного тока с применением правил Кирхгофа необходимо:

Число независимых уравнений, составленных в соответствии с первым и вторым правилом Кирхгофа, оказывается равным числу различных токов, текущих в разветвленной цепи. Поэтому, если заданы ЭДС и сопротивления для всех неразветвленных участков, то могут быть вычислены все токи.