Как работает четырехходовой клапан. Трехходовой клапан принцип работы Видео – Трехходовой клапан принцип работы

Тот, кто хоть раз пытался изучить различные схемы отопительных систем, наверняка сталкивался с такими, где подающий и обратный трубопроводы чудесным образом сходятся воедино. В центре этого узла стоит некий элемент, к которому с четырех сторон подключаются трубы с теплоносителем разной температуры. Этот элемент - четырехходовой клапан для отопления, о назначении и работе которого пойдет речь в данной статье.

О принципе работы клапана

Как и его более «скромный» трехходовой собрат, четырехходовой клапан изготавливается из качественной латуни, но вместо трех присоединительных патрубков имеет целых 4. Внутри корпуса на уплотнительной втулке вращается шпиндель с цилиндрической рабочей частью сложной конфигурации.

В ней с двух противоположных сторон сделаны выборки в виде лысок, так что посередине рабочая часть напоминает заслонку. Сверху и снизу в ней сохранена цилиндрическая форма, чтобы можно было выполнить уплотнение.

Шпиндель со втулкой прижимается к корпусу крышкой на 4 винтах, снаружи на конец вала насаживается регулировочная рукоятка либо устанавливается сервопривод. Как выглядит весь этот механизм, поможет хорошо представить показанная ниже детальная схема четырехходового клапана:

Шпиндель вращается во втулке свободно, поскольку не имеет резьбы. Но при этом выборки, сделанные в рабочей части, могут открывать проток по двум проходам попарно либо позволять смешиваться трем потокам в разных пропорциях. Как это происходит, показано на схеме:

Для справки. Существует и другая конструкция четырехходового клапана, где вместо вращающегося шпинделя задействован нажимной шток. Но подобные элементы не могут смешивать потоки, а только перераспределять. Они нашли свое применение в газовых двухконтурных котлах, переключая поток горячей воды с отопительной системы на сеть ГВС.

Особенность нашего функционального элемента состоит в том, что поток теплоносителя, подведенный к одному из его патрубков, никогда не сможет пройти к другому выходу по прямой. Поток всегда будет поворачивать в правый или левый патрубок, но никак не попадет в противоположный. При определенном положении шпинделя заслонка позволяет теплоносителю проходить сразу вправо и влево, смешиваясь с потоком, идущим из противоположного входа. В этом и заключается принцип работы четырехходового клапана в системе отопления.

Следует отметить, что управление клапаном может осуществляться двумя способами:

вручную: требуемого распределения потоков добиваются путем установки штока в определенное положение, ориентируясь по шкале, находящейся напротив рукоятки. Способ используется редко, поскольку эффективная работа системы требует периодической корректировки, постоянно производить ее вручную невозможно;

автоматически: шпиндель клапана вращается сервоприводом, получающим команды от внешних датчиков либо контроллера. Это позволяет придерживаться заданных температур воды в системе при изменении внешних условий.

Практическое применение

Везде, где нужно обеспечить качественное регулирование теплоносителя, могут применяться клапаны четырехходового типа. Качественное регулирование – это управление температурой теплоносителя, а не его расходом. Добиться необходимой температуры в системе водяного отопления можно лишь одним способом – смешиванием горячей и остывшей воды, получая на выходе теплоноситель с нужными параметрами. Успешное выполнение данного процесса как раз и обеспечивает устройство четырехходового клапана. Приведем пару примеров установки элемента для таких случаев:

Как известно, твердотопливный котел в режиме разогрева нуждается в защите от выпадения конденсата, от которого стенки топки подвергаются коррозии. Традиционная схема с байпасом и трехходовым смесительным клапаном, не позволяющим холодной воде из системы проникать в котловой бак, может быть усовершенствована. Вместо байпасной линии и смесительного узла ставится четырехходовой клапан, как это изображено на схеме:

Возникает закономерный вопрос: какая польза от такой схемы, где придется ставить второй насос, да еще и контроллер для управления сервоприводом? Дело в том, что здесь работа четырехходового клапана подменяет собой не только байпас, но и гидравлический разделитель (гидрострелку), буде в таковом есть нужда. В результате мы получаем 2 отдельных контура, обменивающихся между собой теплоносителем по мере необходимости. Котел дозировано получает охлажденную воду, а радиаторы – теплоноситель с оптимальной температурой.

Поскольку вода, циркулирующая по греющим контурам теплых полов, нагревается максимум до 45 °С, то запускать в них теплоноситель напрямую от котла недопустимо. С целью выдержать такую температуру перед распределительным коллектором обычно ставится смешивающий узел с трехходовым термостатическим краном и байпасом. А вот если вместо этого узла установить четырехходовой смесительный клапан, то в греющих контурах можно использовать обратную воду, идущую от радиаторов, что и показано на схеме:

Заключение

Нельзя сказать, что установка четырехходового крана проста и не требует финансовых вложений. Наоборот, реализация подобных схем выльется в ощутимые финансовые затраты. С другой стороны, они не настолько велики, чтобы отказаться от преимуществ таких систем – эффективности работы и в результате – экономичности. Важное условие – наличие надежного электроснабжения, так как без него перестанет работать привод клапана.

Во время нефтяного кризиса 1973-го года резко возрос спрос на установку большого числа тепловых насосов. Большинство тепловых насосов оборудованы четырехходовым соленоидным вентилем обращения цикла, используемым либо для перевода насоса на летний режим (охлаждение), либо для охлаждения наружной батареи в зимнем режиме (подогрев).
Предметом настоящего раздела является изучение работы четырехходового соленоидного клапана обращения цикла (V4V), устанавливаемого на большинстве классических тепловых насосов типа "воздух-воздух", а также систем оттайки с помощью обращения цикла (см. рис. 60.14), с целью эффективного управления направлениями движения потоков.
А) Работа V4V

Изучим схему (см. рис. 52.1) одного из таких клапанов, состоящего из большого четырехходового главного клапана и малого трехходового управляющего клапана, смонтированного на корпусе главного клапана. В данный момент нас интересует главный четыреххо-довой клапан.


"Т\ Однако нагнетающая (поз. 1) и всасы-\3J вающая (поз. 2) магистрали компресора ВСЕГДА подключаются так, как указано на схеме рис

Наконец, в корпус главного клапана врезаны 3 капилляра (поз. 7) в местах, показанных на рис. 52.1, которые соединены с управляющим электроклапан


Если V4V не смонтирован на установке, при подаче напряжения на электроклапан вы будете ожидать отчетливого щелчка, но золотник не сдвинется. Действительно, чтобы золотник внутри главного клапана сдвинулся, абсолютно необходимо обеспечить в нем разность давлений. Почему так, мы сейчас увидим.


Нагнетающая Рнаг и всасывающая Рвсас магистрали компресора всегда подключены к главному клапану так, как показано на схеме {рис. 52.2). В данный момент мы смоделируем работу трехходового управляющего электроклапана с помощью двух ручных вентилей: одного закрытого (поз. 5), а другого открытого (поз. 6). В центре главного клапана Рнаг развивает усилия, действующие на оба поршня одинаково: одно толкает золотник влево (поз. 1), другое вправо (поз. 2), в результате чего оба этих усилия взаимно уравновешиваются. Напомним, что в обоих поршнях просверлены маленькие отверстия.
Следовательно Рнаг может проходить через отверстие в левом поршне, и в полости (поз. 3) позади левого поршня также установится Рнаг, которое толкает золотник вправо. Конечно, одновременно Рнаг проникает и через отверстие в правом поршне в полость позади него (поз. 4). Однако, поскольку вентиль 6 открыт, а диаметр капилляра, соединяющего полость (поз. 4) со всасывающей магистралью гораздо больше диаметра отверстия в поршне, молекулы газа, прошедшие через отверстие, мгновенно будут всосаны во всасывающую магистраль. Поэтому давление в полости позади правого поршня (поз. 4) будет равно давлению Рвсас во всасывающей магистрали.

Таким образом, более мощная сила, обусловленная действием Рнаг, будет направлена слева направо и заставит золотник переместиться вправо, сообщая негне-тающую магистраль с левым штуцером (поз. 7), а всасывающую магистраль с правым штуцером (поз. 8).
Если теперь Рнаг направить в полость позади правого поршня (закрыть вентиль 6), а Рвсас в полость позади левого поршня (открыть вентиль 5), то преобладающее усилие будет направлено справа налево и золотник переместится влево (см. рис. 52.3).
При этом он сообщает нагнетающую магистраль с правым штуцером (поз. 8), а всасывающую магистраль с левым штуцером (поз. 7), то есть в точности наоборот по сравнению с предыдущим вариантом.

Конечно, использование двух ручных вентилей для обратимости рабочего цикла предусматривать нельзя. Поэтому сейчас мы приступим к изучению трехходового управляющего электроклапана, наиболее подходящего для автоматизации процесса обращения цикла.
Мы видели, что перемещение золотника возможно только в том случае, если существует разность между значениями Рнаг и Рвсас- Управляющий трехходовой электроклапан предназначен только для того, чтобы стравить давление либо из одной, либо из другой полости подачи поршней главного клапана. Поэтому управляющий электроклапан будет иметь очень небольшие размеры и остается неизменным для любых диаметров главного клапана.
Центральный вход этого клапана является общим выходом и соединяется с полостью всасывания {см. рис. 52.4).
Если напряжение на обмотку не подано, правый вход закрыт, а левый сообщен с полостью всасывания. И напротив, когда на обмотку подается напряжение, правый вход сообщен с полостью всасывания, а левый закрыт.

Изучим теперь простейший холодильный контур, оборудованный четырехходовым клапаном V4V (см. рис. 52.5).
Обмотка электромагнита управляющего электроклапана не запитана и его левый вход сообщает полость главного клапана, позади левого поршня золотника, с магистралью всасывания (напомним, что диаметр отверстия в поршне гораздо меньше диаметра капилляра, соединяющего магистраль всасывания с главным клапаном). Поэтому, в полости главного клапана, слева от левого поршня золотника, устанавливается Рвсас.
Поскольку справа от золотника при этом устанавливается Рнаг, под действием разности давлений золотник резко перемещается внутри главного клапана влево.
Достигнув левого упора, игла поршня (поз. А) перекрывает отверстие в капилляре, связывающем левую полость с полостью Рвсас, препятствуя тем самым прохождению газа, так как в этом теперь нет необходимости. В самом деле, наличие постоянной утечки между полостями Рнаг и Рвсас может оказывать только вредное влияние на работу компрессора

Заметим, что давление в левой полости главного клапана при этом вновь достигает значения Рнаг, но, поскольку в правой полости также установилось Рнаг, золотник больше не сможет изменить своего положения.
Теперь запомним как следует расположение конденсатора и испарителя, а также направление движения потока в капиллярном расширительном устройстве.
Перед тем, как продолжить чтение, попробуйте представить, что будет происходить, если на обмотку электромагнитного клапана подать напряжение


При подаче электропитания на обмотку электроклапана, правая полость главного клапана сообщается с магистралью всасывания и золотник резко перемещается вправо. Дойдя до упора, игла поршня прерывает отток газа в магистраль всасывания, перекрывая отверстие капилляра, соединяющего правую полость главного клапана с полостью всасывания.
В результате перемещения золотника нагнетающая магистраль теперь направлена к бывшему испарителю, который стал конденсатором. Точно так же, бывший конденсатор стал испарителем, и всасывающая магистраль теперь подсоединена к нему. Заметим, что хладагент в этом случае движется через капилляр в обратном направлении (см. рис. 52.6).
Чтобы избежать ошибок в названиях теплообменников, которые по очереди становятся то испарителем, то конденсатором, лучше всего называть их наружной батареей (теплообменник, расположенный вне помещения) и внутренней батареей (теплообменник, расположенный внутри помещения).

Б) Опасность гидроудара
При нормальной работе конденсатор заполнен жидкостью. Однако мы увидели, что в момент обращения цикла конденсатор практически мгновенно становится испарителем. То есть, в этот момент появляется опасность попадания в компрессор большого количества жидкости, даже если ТРВ полностью закрыт.
Во избежание такой опасности необходимо, как правило, на всасывающей магистрали компрессора устанавливать отделитель жидкости.
Отделитель жидкости сконструирован таким образом, чтобы в случае возникновения наплыва жидкости на выходе из главного клапана, главным образом, при обращении цикла, не допустить ее попадания в компрессор. Жидкость остается на дне отделителя, в то время как отбор давления во всасывающую магистраль производится в его верхней точке, что полностью исключает опасность попадания жидкости в компрессор.

Вместе с тем, мы видели, что масло (а следовательно, и жидкость) должно постоянно возвращаться в компрессор по линии всасывания. Чтобы дать маслу такую возможность, в нижней части всасывающего патрубка предусматривается калиброванное отверстие (иногда капилляр)...

Когда жидкость (масло или хладагент) задерживается на дне отделителя жидкости, она, через калиброванное отверстие всасывается, медленно и постепенно возвращаясь в компрессор в таких количествах, которые оказываются недостаточными, чтобы привести к нежелательным последствиям.
В) Возможные неисправности
Одна из самых сложных неисправностей клапана V4 V связана с ситуацией, когда золотник заклинивает в промежуточном положении (см. рис. 52.8).
В этот момент все четыре канала сообщаются между собой, что приводит к более или менее полному, в зависимости от положения золотника при заклинивании, перепуску газа из магистрали нагнетания в полость всасывания, что сопровождается появлением всех признаков неисправности типа "слишком слабый компрессор": снижению хо-лодопроизводительности, падению давления конденсации, росту давления кипения (см. раздел 22. "Слишком слабый компрессор ").
Такое заклинивание может произойти случайно и обусловлено оно самой конструкцией главного клапана. В самом деле, поскольку золотник имеет возможность свободного перемещения внутри клапана, он может сдвинуться и вместо того, чтобы находиться у одного из упоров, остаться в промежуточном положении в результате вибраций или механических ударов (например, после транспортировки).


Если клапан V4V еще не установлен и, следовательно, есть возможность подержать его в руках, монтажник ОБЯЗАТЕЛЬНО должен проверить положение золотника, заглянув вовнутрь клапана через 3 нижних отверстия (см. рис. 52.9).

Таким образом, он сможет очень просто обеспечить нормальное положение золотника, поскольку после того, как клапан будет припаян, смотреть вовнутрь станет слишком поздно!
Если золотник расположен неправильно (рис. 52.9, справа), его можно будет привести в желаемое состояние, постукивая одним концом клапана по деревянному бруску или куску резины (см. рис. 52.10).
Никогда не стучите клапаном о металлическую деталь, так как при этом вы рискуете повредить оконечность клапана или совсем ее разрушить.
С помощью этого очень простого приема вы сможете, например, установить золотник клапана V4V в положение охлаждения (нагнетающая магистраль сообщается с наружным теплообменником) при замене неисправного V4V на новый в реверсивном кондиционере (если это происходит в разгаре лета).

Причиной заклинивания золотника в промежуточном положении могут быть также многочисленные дефекты конструкции главного клапана или вспомогательного электроклапана.
Например, если корпус главного клапана был поврежден при ударах и получил деформацию в цилиндрической части, такая деформация будет препятствовать свобод- а ному перемещению золотника.
Один или несколько капилляров, соединяющих полости главного клапана с низконпорной частью контура, могут засориться ы или погнуться, что приведет к уменьшению их проходного сечения и не позволит обеспечить достаточно быстрый сброс давления в полостях позади поршней золотника, нарушая тем самым его нормальную работу (напомним еще раз, что диаметр этих капилляров должен быть существенно больше диаметра отверстий, просверленных в каждом из поршней).
Следы чрезмерного пережога на корпусе клапана и плохой внешний вид паяных соединений являются объективным показателем квалификации монтажника, производившего пайку с помощью газовой горелки. Действительно, во время пайки следует обязательно защищать корпус главного клапана от нагревания, обертывая его мокрой тряпкой или смоченной асбестовой бумагой, так как поршни и золотник снабжены уплотняющими нейлоновыми (фторопластовыми) кольцами, которые одновременно улучшают скольжение золотника внутри клапана. При пайке, если температура нейлона превысит 100°С, он утрачивает свои способности герметизации и антифрикционные характеристики, прокладка получает непоправимые повреждения, что сильно повышает вероятность заклинивания золотника при первой же попытке переключения клапана.
Напомним, что быстрое перемещение золотника при обращении цикла происходит под действием разности между Рнаг и Рвсас. Следовательно, перемещение золотника становится невозможным, если эта разность АР слишком мала (обычно ее минимально допустимое значение составляет около 1 бар). Таким образом, если управляющий электроклапан задействуется тогда, когда перепад АР недостаточен (например, при запуске компрессора), золотник не сможет беспрепятственно перемещаться и появляется опасность его заклинивания в промежуточном положении.
Заедание золотника может также происходить из-за нарушений в работе управляющего электроклапана, например, при недостаточном напряжении питания или неправильном монтаже механизма электромагнита. Заметим, что вмятины на сердечнике электромагнита (вследствие ударов) или его деформация (при разборке или в результате падения) не позволяют обеспечить нормальное скольжение втулки сердечника, что также может привести к заеданию клапана.
Не лишне напомнить, что состояние холодильного контура должно быть абсолютно безупречным. В самом деле, если в обычном холодильном контуре крайне нежелательно присутствие частичек меди, следов припоя или флюса, то для контура с четырехходовым клапаном - тем более. Они могут заклинить его или закупорить отверстия в поршнях и капиллярные каналы клапана V4V. Поэтому, прежде чем приступить к демонтажу или сборке такого контура, постарайтесь продумать максимум предосторожностей, которые вы должны соблюсти.
Наконец, подчеркнем, что клапан V4V настоятельно рекомендуется монтировать в горизонтальном положении, чтобы избежать даже незначительного опускания золотника под действием собственного веса, так как это может вызывать постоянные утечки через иглу верхнего поршня, когда золотник будет находиться в верхнем положении. Возможные причины заклинивания золотника представлены на рис. 52.11.
Теперь встает вопрос. Что делать, если золотник заклинило?

Перед тем, как требовать от клапана V4V нормальной работы, ремонтник должен вначале обеспечить условия этой работы со стороны контура. Например, недостаток хладагента в контуре, обуславливая падение как Рнаг, так и Рвсас, может повлечь за собой слабый перепад ДР, недостаточный для свободного и полного переброса золотника.
Если внешний вид V4V (отсутствие вмятин, следов ударов и перегрева) представляется удовлетворительным и есть уверенность в отсутствии неисправностей электрооборудования (очень часто такие неисправности приписывают клапану V4V, тогда как речь идет только о дефектах электрики), ремонтник должен задаться следующим вопросом:

К какому теплообменнику (внутреннему или наружному) должна подходить нагнетающая магистраль компрессора и в каком положении (справа или слева) должен находиться золотник при данном режиме работы установки (нагрев или охлаждение) и данной ее конструкции (нагрев или охлаждение при обесточенном управляющем электроклапане)?


Когда ремонтник уверенно определил требуемое нормальное положение золотника (справа или слева), он может попытаться поставить его на место, слегка, но резко, постукивая по корпусу главного клапана с той стороны, где должен находиться золотник, киянкой или деревянным молотком (если нет киянки, никогда не применяйте обычный молоток или ку-валдочку, предварительно не приложив к клапану деревянную проставку, иначе вы рискуете серьезно повредить корпус клапана, см. рис. 52.12).
В примере на рис. 52.12 удар киянки справа заставляет золотник переместиться вправо (к сожалению, разработчики, как правило, не оставляют вокруг главного клапана пространства для нанесения удара!).

Действительно, нагнетающий патрубок компрессора должен быть очень горячим (опасайтесь ожогов, так как в некоторых случаях его температура может достигать Ю0°С). Всасывающий же патрубок, как правило, холодный. Следовательно, если золотник сдвинут вправо, штуцер 1 должен иметь температуру, близкую к температуре нагнетающего патрубка, или, если золотник сдвинут влево, близкую к температуре всасывающего патрубка.
Мы видели, что небольшое количество газов из линии нагнетания (следовательно, очень горячих) проходит в течение короткого отрезка времени, когда происходит переброс золотника, по двум капиллярам, один из которых соединяет полость главного клапана с той стороны, где находится золотник, с одним из входов электроклапана, а другой соединяет выход управляющего электроклапана со всасывающей магистралью компрессора. Дальше прохождение газов прекращается, поскольку игла поршня, дошедшего до упора, перекрывает отверстие капилляра и предотвращает попадпние в него газов. Поэтому нормальная температура капилляров (которые можно потрогать кончиками пальцев), также как и температура корпуса управляющего электроклапана, должны быть почти одинаковыми с температурой корпуса главного клапана.
Если ощупывание дает другие результаты, не остается ничего другого, как попытаться разобраться в них.


Допустим, при очередном техническом обслуживании ремонтник обнаруживает небольшой рост давления всасывания и небольшое падение давления нагнетания. Поскольку левый нижний штуцер горячий, он делает вывод о том, что золотник находится справа. Ощупывая капилляры, он замечает, что правый капилляр, а также капилляр, соединяющий выход электроклапана со всасывающей магистралью, имеют повышенную температуру.
На основании этого он может сделать вывод о том, что между полостями нагнетания и всасывания существует постоянная утечка и, следовательно, игла правого поршня не обеспечивает герметичности (см. рис. 52.14).
Он решает повысить давление нагнетания (например, закрывая картоном часть конденсатора), чтобы увеличить разность давлений и тем самым попробовав прижать золотник к правому упору. Затем он производит переброску золотника влево, чтобы убедиться в нормальной работе клапана V4V, после чего возвращает золотник в начальное положение (повышая давление нагнетания, если разность давлений недостаточна, и проверяя реакцию V4V на работу управляющего электроклапана).
Таким образом, на основании указанных экспериментов он может сделать соответствующие выводы (в том случае, если расход утечки продолжает оставться значительным, нужно будет предусматривать замену главного клапана).

В давление нагнетания очень низкое, а давление всасывания аномально высокое. Поскольку все четыре штуцера клапана V4V довольно горячие, ремонтник делает вывод о том, что золотник заклинило в промежуточном положении.
Ощупывание капилляров показывает ремонтнику, что все 3 капилляра горячие, следовательно причина неисправности кроется в управляющем клапане, в котором одновременно оказались открытыми оба проходных сечения.

В этом случае следует полностью проверить все узлы управляющего клапана (механический монтаж электромагнита, электрические цепи, напряжение питания, потребляемый ток, состояние сердечника электромагнита)
и многократно попробовать, включая и выключая клапан, возвратить его в рабочее состояние, удалив возможные посторонние частицы из-под одного или обоих его седел (если дефект не устраняется, нужно будет заменить управляющий клапан).
Что касается катушки электромагнита управляющего клапана (и вообще, катушек любых электромагнитных клапанов), некоторые начинающие ремонтники хотели бы получить рекомендации по поводу того, как определить, работает катушка или нет. В самом деле, для того, чтобы катушка возбуждала магнитное поле, недостаточно подать на нее напряжение, так как внутри катушки может иметь место обрыв провода.
Некоторые монтажники устанавливают жало отвертки на крепежный винт катушки, чтобы оценить силу магнитного поля (однако это не всегда удается), другие снимают катушку и следят за сердечником электромагнита, прислушиваясь к характерному стуку, сопровождающему его перемещение, третьи, сняв катушку, вводят в отверстие для сердечника отвертку, чтобы убедиться в том, что она втягивается под действием силы магнитного поля.
Воспользуемся случаем, чтобы сделать небольшое уточнение...


В качестве примера рассмотрим классическую катушку электромагнитного клапана с номи-^| нальным напряжением питания 220 В.
Как правило, разработчиком допускается длительное повышение напряжения по отношению к номиналу не более, чем на 10% (то есть около 240 вольт), без риска чрезмерного перегрева обмотки и гарантируется нормальная работа катушки при длительном падении напряжения не более, чем на 15% (то есть 190 вольт). Эти допустимые пределы отклонения напряжения питания электромагнита легко объяснимы. Если напряжение питания слишком высокое, обмотка сильно нагревается и может сгореть. И напротив, при низком напряжении, магнитное поле оказывается слишком слабым и не позволит обеспечить втягивание сердечника вместе со штоком клапана внутрь катушки (см. раздел 55. "Различные проблемы электрооборудования ").
Если предусмотренное для нашей катушки напряжение питания составляет 220 В, а номинальная мощность равна 10 Вт, можно предположить, что она будет потреблять ток I = Р / U, то есть 1 = 10 / 220 = 0,045 Ар (или 45 мА).
Напряжение подано I = 0,08 А А,
Сильная опасность перегорания катушки
На самом деле, катушка будет потреблять ток около 0,08 А (80 мА), так как для переменного тока Р = U x I x coscp, а для катушек электромагнитов coscp, как правило, близок к 0,5.
Если из катушки, находящейся под напряжением, извлечь сердечник, то потребляемый ток возрастет до 0,233 А (то есть, почти в 3 раза больше, чем номинальное значение). Поскольку выделяющееся при прохождении тока тепло пропорционально квадрату силы тока, значит катушка будет нагреваться в 9раз больше, чем в номинальных условиях, что сильно увеличивает опасность ее сгорания.
Если в катушку, находящуюся под напряжением, вставить металлическую отвертку, магнитное поле втянет ее вовнутрь и потребляемый ток слегка упадет (в рассматриваемом примере до 0,16 А, то есть в два раза больше номинального значения, см. рис. 52.16).
Запомните, что никогда не следует демонтировать катушку электромагнита, находящуюся под напряжением, так как она может очень быстро сгореть.
Хорошим способом определения целостности обмотки и проверки наличия напряжения питания является использование токоизмерителъных клещей (трансформаторных клещей), которые раскрывают и придвигают к катушке для обнаружения магнитного поля, создаваемого ею при нормальной работе

Если катушка возбуждена, стрелка амперметра отклоняется
Трансформаторные клещи, реагируя по своему назначению на изменение магнитного потока возле катушки, позволяют, в случае ее неисправности, зарегистрировать достаточно высокую величину силы тока на амперметре {которая, впрочем, абсолютно ничего не означает), что быстро дает уверенность в исправности электрических цепей электромагнита.

Заметим, что использование открытых трансформаторных токоизмерительных клещей допустимо для любых обмоток, питающихся переменным током (электромагниты, трансформаторы, двигатели...), в момент, когда проверяемая обмотка не находится в непосредственной близости от другого источника магнитного излучения.

Упражнение №1

Ремонтник должен произвести замену клапана V4 V в разгар зимы на установке, представленной на рис. 52.18.

После слива хладагента из установки и снятия неисправного V4V ремонтник задается следующим вопросом:

Имея в виду, что наружная и внутренняя температуры низкие, тепловой насос должен работать в режиме обогрева кондиционируемого помещения.

Перед тем, как устанавливать новый V4V, в каком положении должен находиться золотник: справа, слева или его положение не имеет значения?

В качестве подсказки приводим схему, выгравированную на корпусе электроклапана.

Решение упражнения №1

По окончании ремонта тепловой насос должен будет работать в режиме обогрева. Это значит, что внутренний теплообменник будет использоваться как конденсатор (см. рис. 52.22).

Изучение трубопроводов показывает нам, что при этом золотник V4V должен быть слева.
Следовательно, перед установкой нового клапана монтажник должен убедиться, что золотник на самом деле находится слева. Он может это сделать, посмотрев внутрь главного клапана через три нижних соединительных штуцера.
В случае необходимости, следует передвинуть золотник влево, либо постукивая левым торцом главного клапана о деревянную поверхность, либо слегка ударяя киянкой по левому торцу.
Рис. 52.22.
Только после этого можно будет устанавливать клапан V4V в контур {обращая внимание на предотвращение чрезмерного перегрева корпуса главного клапана при пайке).
Теперь рассмотрим обозначения на схеме, которая иногда наносится на поверхность электроклапана (см. рис. 52.23).
К сожалению, такие схемы не всегда имеются, хотя их наличие очень полезно для ремонта и обслуживания V4V.
Итак, золотник ремонтником перемещен влево, при этом лучше, чтобы в момент запуска напряжение на электроклапане отсутствовало. Такая предосторожность позволит избежать попытки обращения цикла в момент запуска компрессора,
когда перепад АР между Рн очень небольшой.

Нужно иметь в виду, что любая попытка обращения цикла при низком перепаде АР чревата опасностью заклинивания золотника в промежуточном положении. В нашем примере, чтобы исключить такую опасность, достаточно отсоединить обмотку электроклапана от сети при запуске теплового насоса. Это сделает полностью невозможным попытку обращения цикла при слабом перепаде АР (например, из-за неверного электрического монтажа)
Таким образом, перечисленные предосторожности должны позволить ремонтнику избежать возможных неполадок в работе агрегата V4V при его замене.

Изучим схему (см. рис. 52.1) одного из таких клапанов, состоящего из большого четырехходового главного клапана и малого трехходового управляющего клапана, смонтированного на корпусе главного клапана. В данный момент нас интересует главный четыреххо-довой клапан.
Вначале отметим, что из четырех штуцеров главного клапана три находятся рядом друг с другом (причем всасывающая магистраль компрессора всегда соединяется со средним из этих трех штуцеров), а четвертый штуцер находится с другой стороны клапана (к нему подсоединяется нагнетающая магистраль компрессора).
Заметим также, что в некоторых моделях V4V штуцер всасывания может быть смещен относительно центра клапана.
"Т\ Однако нагнетающая (поз. 1) и всасы-\3J вающая (поз. 2) магистрали компрес-^^ сора ВСЕГДА подключаются так, как указано на схеме рис 52.1.
Внутри главного клапана сообщение между различными каналами обеспечивается с помощью подвижного золотника (поз. 3), скользящего вместе с двумя поршнями (поз. 4). В каждом поршне просверлено небольшое отверстие (поз. 5) и, кроме того, каждый поршень снабжен иглой (поз. 6).
Наконец, в корпус главного клапана врезаны 3 капилляра (поз. 7) в местах, показанных на рис. 52.1, которые соединены с управляющим электроклапаном.
Рис. 52.1.
ности, если не изучить в совершенстве принцип работы клапана.
Каждый представленный нами элемент при работе V4V играет свою роль. То есть, если хотя бы один из этих элементов выйдет из строя, он может оказаться причиной очень трудно обнаруживаемой неисправ-
Рассмотрим теперь, как работает главный клапан...

Схемы смесительных узлов (так выглядит узел теплого пола в сборе) :

Смесительный узел для теплого пола Valtec для 1 контура (до 20 м2.)

Коллектор теплого пола Valtec от 2 до 4 контуров (20-60 м2.)

Наш интернет-магазин предлагает купить термостатические смесительные клапаны и сервомоторы для организации систем отопления и водоснабжения. Являясь сертифицированным дистрибьютором всемирно известной торговой марки Valtec, мы поставляем надёжную инженерную сантехнику, востребованную в частном и массовом строительстве, при проведении реконструкции зданий и помещений различного назначения.

Регулирующие смесительные клапаны являются составными частями современных систем отопления, горячего и холодного водоснабжения. Они предназначены для того, чтобы холодный и теплый водопотоки смешивались, подавая на выходе жидкость требуемой температуры. Эти клапаны (вентили), как трехходовые, так и четырехходовые, востребованы при организации водоснабжения с циркуляцией горячей жидкости либо без её циркуляции в системах классического радиаторного, напольного, панельного и потолочного отопления, служат ограничителями обратки, а также обеспечивают обмен между поступающей и обратной линиями. Корпус вентиля может быть стальным, латунным, чугунным. В линейке продукции Valtec представлены смесительные клапаны, корпуса и регулирующие детали которых сделаны из латуни - на этом металле не образуются коррозионные наслоения. Уплотнение штока происходит за счёт пары колец, изготовленных из каучука-синтетика Epdm Perox. Вентили полностью ремонтопригодны, допускается замена верхнего кольца без необходимости разбирать деталь полностью.

Производя смешивание теплоносителя из двух потоков с различной температурой (в водоснабжении это горячая и холодная вода, в отоплении - подающаяся вода и обратка), регулирующие клапаны Valtec создают поток с заданным уровнем подогрева.

В нашем интернет-магазине можно купить трехходовые и четырехходовые смесительные вентили Valtec. Трехходовая деталь понадобится при монтаже системы «теплый пол», а также для подогрева теплой жидкости от высокотемпературного теплоносителя в отопительной конструкции. Четырехходовые вариации нужны для того, чтобы создать сразу два регулирующихся контура, каждый - с персональными параметрами температуры. Например, это необходимо для того, чтобы защитить котлы от холодной температуры в обратке. Управлять трех- и четырехходовыми смесительными клапанами Valtec можно как в ручном режиме, так и посредством серводвигателя. Последний вы также можете заказать на нашем сайте. Серводвигатель управляет вентилем при помощи контроллера либо термостата. Компания поставляет модели с аналоговым и импульсным управлением, с возможностью переключения на ручную регулировку.

Термин «термостатический» в описании смесительных клапанов означает, что они поддерживают оптимальный уровень температуры в системах ГВС и защищают от возможности обжечься.

Спектр товарных предложений арматуры бренда Valtec содержит регулирующие детали для всевозможных применений, произведенные из высококачественных, надежных материалов. Клапаны (вентили) для отопительных систем могут эксплуатироваться при температуре теплоносителя, достигающей 120°С, и при уровне давления не более 10 Бар. Изделия служат без необходимости замены или ремонта в течение 20-25 лет (конкретный срок эксплуатации зависит от модели).

Это позволяет несколько автоматизировать управление, однако не дает возможности постоянно поддерживать определенную температуру на входе в котел (что необходимо для безопасности и долговечности работы теплогенератора). Ведь при больших перепадах температур существует вероятность образования конденсата с последующей коррозией теплобменника, увеличивается также интенсивность накипеобразования. В случае использования чугунного теплообменника возможно появление трещин в секциях теплообменника. Кроме того, увеличивается напряжение на соединениях деталей котлов, в первую очередь, на стыках и вдоль сварных швов.

Поэтому для безопасности работы и долговечности оборудования, а также достижения необходимого уровня комфорта, для разделения отопительного и котлового контуров применяют четырехходовые клапаны. На рис. 2 представлена типовая схема с использованием твердотопливного котла и бака-аккумулятора ГВС (один выход из котла, после которого теплоноситель распределяется на подогрев горячей воды и систему отопления). Разделение котлового контура и контура системы отопления осуществляется с помощью 4-ходового клапана, который позволяет достичь постоянной циркуляции в котловом и, одновременно, в контуре системы отопления.

Рис. 2. Схема монтажа твердотопливного котла к системе отопления с принудительной циркуляцией теплоносителя и 4-ходовым клапаном:
1 - котел; 2 - блок автоматики управления котлом; 3 - датчик температуры теплоносителя; 4 - комнатный термостат; 5 - циркуляционный насос; 6 - потребитель тепла; 7 - дифференциальный клапан; 8 - четырехходовой смесительный клапан; 9 - расширительный бак; 10 - бойлер ГВС; 11 - насос бойлера; 12 - запорная арматура; 13 - фильтр

При этом, дополнительно к крайним положениям, в средней позиции 50% теплоносителя идет в систему отопления, смешиваясь с 50% теплоносителя, возвращающегося из системы отопления, а оставшаяся часть - возвращается обратно в котел, смешиваясь с оставшейся частью теплоносителя из системы отопления. Возможно также поддерживать, в отличие от регулирования с 3-ходовыми клапанами, константу разделения потоков и в других строго определенных пропорциях. Например, 30% теплоносителя - в котловом контуре, 70% - в систему отопления. Или любое другое соотношение (рис. 3).


Рис. 3. Положения 4-ходового клапана

Такое постоянство расхода очень важно для твердотопливного котла, поскольку, как мы уже отмечали выше, при его применении не такие широкие возможности влиять на интенсивность процесса горения, как в газовых котлах. Применение же автоматического регулятора тяги позволяет регулировать температуру только на выходе из котла, но не на обратной линии.

Особенности применения клапанов

На 4-ходовый клапан устанавливается электрический привод, управляемый контроллером, который, в свою очередь, работает по сигналам от датчиков температуры. Такой привод позволяет клапану находиться в любом положении, тем самым осуществляя точное поддержание заданных температур. Четырехходовые клапаны позволяют также совместное использование в котельной несколь ких источников тепла, работающих на различных видах топлива. Например, в настоящее время нередко можно встретить комбинацию твердотопливного и газового котлов (рис. 4) или твердотопливного и электрического котлов. При этом газовый котел может использоваться как резервный. В случае же постоянного использования нескольких источников тепла, (например совместное использование газового, электрического, твердотопливного котлов и гелиоустановки) необходимо, чтобы все источники тепла работали на бак-аккумулятор (буферная емкость) , из которого будет осуществляться отбор теплоносителя на систему отопления и ГВС.


Рис. 4. Принципиальная схема работы котлов на различных видах топлива с применением четырехходового клапана:
ТК - твердотопливный котел; ГК - газовый котел; 1 - четырехходовой клапан; 2 - датчик температуры; 3 - котловые насосы; 4 - потребитель тепла; 5 - циркуляционный насос; 6 - контроллер

Представленные на украинском рынке 4-ходовые клапаны для систем отопления, как правило, из чугуна с хромированными внутренними поверхностями. Их диаметры - от 20 до 150 мм. Подобные клапаны предлагают компании Afriso (Германия), ESBE (Швеция), Honeywell (США), Oventrop (Германия) и др.

К примеру, компактные 4-ходовые смесительные клапаны серии V5442A (рис. 5), производимые компанией Honeywell, предназначены для систем, в которых в качестве теплоносителя используется вода или жидкости, с содержанием гликоля до 50%. Они рассчитаны на эксплуатацию при температурах 2...110°С и рабочем давлении до 6 бар. Клапаны выпускаются с размерами присоединения 20, 25 и 32 мм. Соответственно, значения коэффициента Kvs - от 4 до 16 м 3 /ч. Клапаны рассчитаны на работу совместно с электроприводами. Для более мощных систем используется фланцевая серия клапанов ZR…FA. Монтаж 4-ходовых клапанов не вызывает сложностей и предусматривает множество вариантов реализации (рис. 6).


Рис. 5. Четырехходовые клапаны V5442A и ZR…FA (Honeywell)


Рис. 6. Варианты присоединения 4-ходового клапана


Резюме

Таким образом, можно утверждать, что применение 4-ходовых клапанов практически идеально подходит для использования совместно с твердотопливными котлами, ведь они позволяют реализовать больше возможностей регулирования, чем при использовании 3-ходовых клапанов.

Применение механических термосмесительных клапанов (рис. 7) не решает задач по управлению температурами в системе и совместного использования нескольких источников тепла, а лишь позволяет поддерживать предварительно установленную постоянную температуру теплоносителя на входе в котел, без учета условий работы котла и самой системы.


Рис. 7. Применение термосмесительного клапана для поддержания постоянной температуры на входе в котел

Также использование термосмесительных клапанов больших диаметров экономически нецелесообразно, т. к. их стоимость существенно выше, чем стоимость системы с применением четырехходового клапана. На данный момент стоимость полностью автоматизированного управления с применением четырехходового клапана, на системы мощностью до 80 кВт, находится в диапазоне 400-800 евро. Срок окупаемости такой системы 3-5 лет.

Больше важных статей и новостей в Telegram-канале AW-Therm . Подписывайтесь!

Четырёхходовой клапан – это элемент сантехники, выполняющий важные функции в системе обогрева.

Устройство и функции

Четырёхходовой клапан для отопления вращает шпиндель в самом корпусе. Вращение обязательно должно осуществляться в свободном порядке, потому что втулка не содержит резьбы. Функционирующая часть шпинделя имеет пару выборок, при помощи которых открывается поток по двум проходам.

Узнать цену и купить отопительное оборудование и сопутствующие товары вы можете у нас. Пишите, звоните и приходите в один из магазинов в вашем городе. Доставка по всей территории РФ и стран СНГ.

Как следствие, поток регулируется и не в силах пройти напрямую ко второй выборке. Поток может сворачивать в любой патрубок, что находится с левой либо правой стороны от него. Получается, что все потоки, которые проходят с разных сторон, перемешиваются и расходятся по четырём патрубкам.

Есть устройства, где вместо шпинделя функционирует нажимный шток , однако такие конструкции не предназначены перемешивать потоки.

Четырёхходовой клапан для отопления – это элемент обогревательной системы, к которому подсоединены четыре трубы, имеющие тепловой носитель разной температуры. Внутри корпуса находятся втулка и шпиндель. Последний имеет работу с трудной конфигурацией.

Работу 4-х ходового смесителя можно контролировать следующим образом:

  1. Ручной. В данном случае для распределения потоков необходим монтаж штока в одном конкретном положении. И проводить регулировку этого положения требуется вручную.
  2. Автоматический (с терморегулятором). Здесь внешний датчик отдаёт команду шпинделю , в результате чего последний и начинает вращаться. Из-за этого в обогревательной системе сохраняется стабильная указанная температура.

Схема монтажа четырехходового смесительного клапана в системе отопления

Основные функции клапана 4-х ходового клапана следующие.

  1. Смешивание водяных потоков с разным температурным нагревом. Устройство используется для предотвращения перегрева твердотопливного котла. Четырёхходовой смесительный клапан не позволяет температуре повышаться в котельном оборудовании выше 110 °C. При нагреве 95 °C прибор запускает холодную воду для охлаждения системы.
  2. Защита котельного оборудования. 4-х ходовой клапан препятствует образованию коррозии и тем самым продлевает срок службы всей системы.

Благодаря 4-х ходовому клапану для отопления осуществляется равномерный расход горячего и холодного теплового носителя. Для нормального функционирования не требуется монтажа байпаса , так как клапан сам пропускает необходимый объём жидкости. Прибор применяется там, где требуется температурная регулировка. В первую очередь, в системе обогрева радиаторами совместно с твердотопливным котлом. Если в иных случаях настройка жидкости осуществляется с применением гидронасоса и байпаса, то в данном случае работа клапана целиком заменяет данные приборы. Получается, что котёл функционирует стабильно и постоянно получает определённый объём теплового носителя.

Производители

Четырёхходовой клапан для отопления производят такие компании, как Honeywell, ESBE, VALTEC и другие.

История компании Honeywell началась в 1885 году.

На сегодняшний день это производитель, который входит в список 100 ведущих мировых фирм, составляемый журналом Fortune.

Четырёхходовой клапан Honeywell

Четырёхходовые клапаны Honeywell серии V5442A изготовлены для систем, где в качестве теплоносителя выступает вода либо жидкости, с процентом гликоля до 50. Они предназначены для работы при температуре от 2 до 110 °С и в рабочем давлении до 6 бар.

Хоневелл изготавливает клапаны с размером соединения 20, 25, 32 мм. Поэтому значения коэффициента Kvs – от 4 до 16 м³/ч. Работают устройства серии вместе с электрическими приводами. Для систем с большей мощностью применяется фланцевая серия клапанов ZR-FA.

Четырёхходовой клапан Honeywell не вызовет трудностей при монтаже, существует много вариантов реализации.

Шведская компания ESBE уже более 100 лет устанавливает новые стандарты качества клапанов и приводов, применяемых в различных системах.

Все её изделия экономичны, надёжны и удобны при эксплуатации в системах обогрева, охлаждения и водяного снабжения.

ESBE предлагает 4-х ходовой клапан для отопления с внутренней резьбой. Корпус клапана изготовлен из латуни. Рабочее давление 10 атмосфер, температура 110 градусов (кратковременная — 130 градусов). Четырёхходовой смесительный клапан производится в размерах 1/2-2″, с пропускной способностью 2,5 -40 Kvs.

Компания VALTEC появилась в 2002 году в Италии и за короткий срок наладила выпуск продукции, которая разработана на основе изучения плюсов и минусов товаров различных производителей.

Валтек предлагает смесительные клапаны различного назначения, которые рассчитаны на долговечную работу в системе инженерии (водяной тёплый пол, вмонтированное настенное, потолочное отопление и охлаждение, горячее водяное снабжение). Продукцию производителя можно найти в любой точке России и стран СНГ.

Нельзя утверждать, что четырёхходовой клапан для отопления не потребует финансовых вложений. Установка прибора будет стоить дорого, однако, с другой стороны, эффективность работы и, как следствие, экономичность, оправдывает денежные затраты. Есть только главное условие – наличие качественной электрической сети, так как без неё привод клапана перестанет работать.