Большой геологический круговорот веществ. Малый биологический (географический) круговорот веществ

Солнечная энергия на Земле вызывает два круговорота веществ: большой (геологический) , наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы, и малый, биологический (биотический), развивающийся на основе большого и состоящий в непрерывном, циклическом, но неравномерном во времени и пространстве, и сопровождающийся более или менее значительными потерями закономерного перераспределения вещества, энергии и информации в пределах экологических систем различного уровня организации. Оба круговорота взаимно связаны и представляют как бы единый процесс.

Длится миллионы лет. Горные породы разрушаются, выветриваются и потоками вод сносятся в Мировой океан, где образуют мощные морские напластования. Часть химических соединений растворяется в воде или потребляется биоценозом. Крупные медленные геоктонические изменения, процессы, связанные с опусканием материков и поднятием морского дна, перемещение морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Биологический круговорот , являясь частью большого, происходит на уровне биогеоценоза и заключается в том, что питательные вещества почвы, воды, воздуха аккумулируются в растениях, расходуются на создание их массы и жизненные процессы в них. Продукты распада органического вещества под воздействием бактерий вновь разлагаются до минеральных компонентов, доступных растениям, и вовлекаются ими в поток вещества.

Взаимодействие абиотических факторов и живых организмов экосистемы сопровождается непрерывным круговоротом вещества между биотопом и биоценозом в виде чередующихся то органических, то минеральных соединений. Обмен химических элементов между живыми организмами и неорганической средой, различные стадии которого происходят внутри экосистемы, называют биогеохимическим круговоротом , или биогеохимическим циклом.

Существование подобных круговоротов создает возможность для саморегуляции (гомеостаза) системы, что придает экосистеме устойчивость: удивительное постоянство процентного содержания различных элементов.

Основные биохимические круговороты .

Круговорот воды

Около трети поступающей на Землю энергии Солнца затрачивается на приведение в движение круговорота воды. Море теряет из-за испарения воды больше, чем получает с осадками. На суше ситуация противоположная. То есть значительная часть осадков, поддерживающих экосистемы суши, приходит к нам с моря.

Однако немалый вклад в круговорот воды вносит и растительность данной конкретной местности, особенно в областях, находящихся в глубине континента, или же «экранированных» от моря грядой гор. Дело в том, что вода, поступающая в растения из почвы, почти полностью (97-99 %) испаряется через листья. Это называется транспирацией. Испарение охлаждает листья и способствует движению в растениях биогенных элементов.

Круговорот углерода

Углерод является одним из самых необходимых для жизни компонентов. В состав органического вещества он включается в процессе фотосинтеза. Затем основная его масса поступает в пищевые цепи животных и накапливается в их телах в виде различного рода углеводов.

Главную роль в круговороте углерода играет атмосферный и гидросферный фонды углекислого газа СО2. Этот фонд пополняется при дыхании растений и животных, а также при разложении мертвой органики. Некоторая часть углерода ускользает из круговорота в захоронения. Однако человек в последнее время достаточно успешно разрабатывает эти захоронения, возвращая в круговорот жизни углерод и другие важные для жизни элементы, накопленные за миллионы лет. Фотосинтезирующий зеленый пояс и карбонатная система моря поддерживают постоянный уровень СО2 в атмосфере.

Круговорот азота

Азот входит в состав аминокислот, являющихся основным строительным материалом для белков. Основным источником азота является атмосфера, откуда в почву, а затем в растения азот попадает только в форме нитратов, которые являются результатом деятельности организмов-азотофиксаторов (отдельные виды бактерий, сине-зеленых водорослей и грибов.

Второй источник азота для растений - результат разложения органики, в частности белков. При этом, в начале образуется аммиак, который преобразуется бактериями-нитрификаторами в нитраты и нитриты.

Возвращение азота в атмосферу происходит в результате деятельности бактерий-денитрификаторов, разлагающих нитраты до свободного азота и кислорода.

Круговорот фосфора

Фосфор является необходимым компонентом нуклеиновых кислот (РНК и ДНК), выполняющих в биосистемах функции, связанные с записью, хранением и чтением информации о строении организма. Фосфор - достаточно редкий элемент. Фосфор встречается лишь в немногих химических соединениях. Он циркулирует, переходя из органики в фосфаты, которые могут затем использоваться растениями. Особенность круговорота фосфора в том, что в нем отсутствует газообразная фаза. То есть основным резервуаром фосфора является не атмосфера, а горные породы и другие отложения, образовавшиеся в прошлые эпохи. Породы эти подвергаются эрозии, высвобождая фосфаты в экосистемы. После неоднократного потребления его организмами суши и моря фосфор в конечном итоге выводится в донные осадки. Это грозит дефицитом фосфора. В прошлом морские птицы, по-видимому, возвращали фосфор в круговорот. Сейчас основным поставщиком фосфора является человек, вылавливая большое количество морской рыбы, а также перерабатывающий донные отложения в фосфаты.

Круговорот серы

Сера является элементом, необходимым для синтеза многих белков. Для биосистем требуется очень мало серы.

Круговорот серы осуществляется через воздух, воду и почву. Сульфат SO4 аналогично нитрату и фосфату - основная доступная форма серы, которая восстанавливается растениями и включается в белки. Затем она проходит по пищевым цепям экосистем и возвращается в круговорот с экскрементами животных. Основными источниками поступления соединений серы в биосферу являются производственная деятельность человека (сжигание угля и серосодержащих углеводородов), вулканы, разложение органики и распад серосодержащих руд и минералов.

Пути возврата элементов в круговорот :

  • через микробное разложение;
  • через экскременты животных;
  • прямой передачей от растения к растению в симбиозе;
  • физическими процессами (молния, ионизация и т.п.);
  • за счет энергии топлива (например, при промышленной фиксации азота);
  • автолиз (саморастворение) - высвобождение питательных веществ из остатков растений и экскрементов без участия микроорганизмов.

Если не разрушать природные механизмы рециркуляции и не отравлять их, то они в основном самопроизвольно реализуют возврат в круговорот воды и элементов питания. К сожалению, человек так ускоряет движение многих веществ, что круговороты становятся несовершенными или процесс теряет цикличность: в одних местах возникает недостаток, а в других - избыток каких-то веществ.

Большой (геологический) и малый (биогеохимические) круговорот веществ

Все вещества на нашей планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ:

Большой (геологический или абиотический);

Малый (биотический, биогенный или биологический).

Круговороты веществ и потоки космической энергии создают устойчивость биосферы. Круговорот твердого вещества и воды, происходящий в результате действия абиотических факторов (неживой природы), называют большим геологическим круговоротом. При большом геологическом круговороте (протекает миллионы лет) горные породы разрушаются, выветриваются, вещества растворяются и попадают в Мировой океан; протекают геотектонические изменения, опускание материков, поднятие морского дна. Время круговорота воды в ледниках 8 000 лет, в реках - 11 дней. Именно большой круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Большой, геологический круговорот в биосфере характеризуется двумя важными моментами: кислород углерод геологический

  • а) осуществляется на протяжении всего геологического развития Земли;
  • б) представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.

На современном этапе развития человечества в результате большого круговорота на большие расстояния переносятся также загрязняющие вещества - оксиды серы и азота, пыль, радиоактивные примеси. Наибольшему загрязнению подверглись территории умеренных широт Северного полушария.

Малый, биогенный или биологический круговорот веществ происходит в твердой, жидкой и газообразных фазах при участии живых организмов. Биологический круговорот в противоположность геологическому требует меньших затрат энергии. Малый круговорот является частью большого, происходит на уровне биогеоценозов (внутри экосистем) и заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела. Продукты распада органического вещества разлагаются до минеральных компонентов. Малый круговорот незамкнут, что связано с поступлением веществ и энергии в экосистему извне и с выходом части их в биосферный круговорот.

В большом и малом круговоротах участвует множество химических элементов и их соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы и азота (их оксиды - главнейшие загрязнители атмосферы), а также фосфора (фосфаты - главный загрязнитель материковых вод). Практически все загрязняющие вещества выступают как вредные, и их относят к группе ксенобиотиков. В настоящее время большое значение имеют круговороты ксенобиотиков - токсичных элементов - ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина). Кроме того, из большого круговорота в малый поступают многие вещества антропогенного происхождения (ДДТ, пестициды, радионуклиды и др.), которые причиняют вред биоте и здоровью человека.

Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - созидания органического вещества и его разрушения живым веществом.

В отличие от большого круговорота малый имеет разную продолжительность: различают сезонные, годовые, многолетние и вековые малые круговороты. Круговорот химических веществ из неорганической среды через растительность и животных обратно в неорганическую среду с использованием солнечной энергии химических реакций называется биогеохимическим циклом.

Настоящее и будущее нашей планеты зависит от участия живых организмов в функционировании биосферы. В круговороте веществ живое вещество, или биомасса, выполняет биогеохимические функции: газовую, концентрационную, окислительно-восстановительную и биохимическую.

Биологический круговорот происходит при участии живых организмов и заключается в воспроизводстве органического вещества из неорганического и разложении этого органического до неорганического посредством пищевой трофической цепи. Интенсивность продукционных и деструкционных процессов в биологическом круговороте зависит от количества тепла и влаги. Например, низкая скорость разложения органического вещества полярных районов зависит от дефицита тепла.

Важным показателем интенсивности биологического круговорота является скорость обращения химических элементов. Интенсивность характеризуется индексом, равным отношению массы лесной подстилки к опаду. Чем больше индекс, тем меньше интенсивность круговорота.

Индекс в хвойных лесах - 10 - 17; широколиственных 3 - 4; саванне не более 0,2; влажных тропических лесах не более 0,1 , т.е. здесь биологический круговорот наиболее интенсивный.

Поток элементов (азота, фосфора, серы) через микроорганизмы на порядок выше, чем через растения и животных. Биологический круговорот не является полностью обратимым, он тесно связан с биогеохимическим круговоротом. Химические элементы циркулируют в биосфере по различным путям биологического круговорота:

  • - поглощаются живым веществом и заряжаются энергией;
  • - покидают живое вещество, выделяя энергию во внешнюю среду.

Эти циклы бывают двух типов: круговорот газообразных веществ; осадочный цикл (резерв в земной коре).

Сами круговороты состоят из двух частей:

  • - резервного фонда (это часть вещества, не связанная с живыми организмами);
  • - подвижного (обменного) фонда (меньшая часть вещества, связанная с прямым обменом между организмами и их непосредственным окружением).

Круговороты делят на:

  • - круговороты газового типа с резервным фондом в земной коре (круговороты углерода, кислорода, азота) - способны к быстрой саморегуляции;
  • - круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.) - более инертны, основная масса вещества находится в «недоступном» живым организмам виде.

Круговороты также можно разделить на:

  • - замкнутые (круговорот газообразных веществ, например, кислорода, углерода и азота - резерв в атмосфере и гидросфере океана, поэтому нехватка быстро компенсируется);
  • - незамкнутые (создающие резервный фонд в земной коре, например, фосфор - поэтому потери плохо компенсируются, т.е. создается дефицит).

Энергетической основой существования биологических круговоротов на Земле и их начальным звеном является процесс фотосинтеза. Каждый новый цикл круговорота не является точным повторением предыдущего. Например, в ходе эволюции биосферы часть процессов имела необратимый характер, в результате чего происходило образование и накопление биогенных осадков, увеличение количества кислорода в атмосфере, изменение количественных соотношений изотопов ряда элементов и т.д.

Циркуляцию веществ принято называть биогеохимическими циклами. Основные биогеохимические (биосферные) циклы веществ: цикл воды, цикл кислорода, цикл азота (участие бактерий-азотфиксаторов), цикл углерода (участие аэробных бактерий; ежегодно около 130 т углерода сбрасывается в геологический цикл), цикл фосфора (участие почвенных бактерий; ежегодно в океаны вымывается 14 млн.т фосфора), цикл серы, цикл катионов металлов.

Круговорот воды

Круговорот воды - замкнутый цикл, который может совершаться, как было сказано выше, и в отсутствии жизни, но живые организмы видоизменяют его.

Круговорот основан на принципе: суммарное испарение компенсируется выпадением осадков. Для планеты в целом испарение и осадки уравновешивают друг друга. При этом из океана испаряется воды больше, чем возвращается с осадками. На суше, наоборот, больше выпадает осадков, но излишек стекает в озера и реки, а оттуда снова в океан. Баланс влаги между континентами и океанами поддерживается речным стоком.

Таким образом, глобальный гидрологический цикл имеет четыре основных потока: осадки, испарение, влагоперенос, транспирация.

Вода - самое распространенное вещество в биосфере - служит не только средой обитания для многих организмов, но и является составной частью тела всех живых существ. Несмотря на огромное значение воды во всех жизненных процессах, происходящих в биосфере, живое вещество не играет определяющей роли в большом круговороте воды на земном шаре. Движущей силой этого круговорота является энергия солнца, которая тратится на испарение воды с поверхности водяных бассейнов или суши. Испарившаяся влага конденсируется в атмосфере в виде облаков, переносимых ветром; при охлаждении облаков выпадают осадки.

Общее количество свободной несвязанной воды (доля океанов и морей, где жидкая соленая вода), приходится от 86 до 98 %. Остальное количество воды (пресная вода) хранится в полярных шапках и ледниках и образует водные бассейны и ее грунтовые воды. Выпадающие на поверхность суши, покрытой растительностью, осадки частично задерживаются листовой поверхностью и в дальнейшем испаряются в атмосферу. Влага, достигшая почвы, может присоединиться к поверхностному стоку или поглотиться почвой. Полностью поглотившись почвой (это зависит от типа почв, особенности горных пород и растительного покрова), избыток осадка может просочиться вглубь, к грунтовым водам. Если количество выпавших осадков превышает влагоемкость верхних слоев почвы, начинается поверхностный сток, скорость которого зависит от состояния почвы, крутизны склона, продолжительности осадков и характера растительности (растительность может предохранить почву от водной эрозии). Вода, задержавшаяся в почве, может испаряться с ее поверхности или, после поглощения корнями растений, транспирироваться (испаряться) в атмосферу через листья.

Транспирационный ток воды (почва - корни растений - листья -атмосфера) представляет собой основной путь воды через живое вещество в ее большом круговороте на нашей планете.

Круговорот углерода

От свойств и особенностей углерода зависит все многообразие органических веществ, биохимических процессов и жизненных форм на Земле. Содержание углерода в большинстве живых организмов составляет около 45 % от сухой их биомассы. В круговороте органического вещества и всего углерода Земли участвует все живое вещество планеты, которое непрерывно возникает, видоизменяется, погибает, разлагается и в такой последовательности происходит перенос углерода с одного органического вещества на построение другого по цепи питания. Кроме того, все живое дышит, выделяя углекислый газ.

Круговорот углерода на суше. Круговорот углерода поддерживается благодаря фотосинтезу наземными растениями и океанским фитопланктоном. Поглощая углекислоту (фиксируя неорганический углерод), растения с помощью энергии солнечного света преобразуют ее в органические соединения - создавая свою биомассу. Ночью же растения, как и все живое, дышат, выделяя углекислый газ.

Отмершие растения, трупы и экскременты животных служат пищей для многочисленных гетеротрофных организмов (животных, растений-сапрофитов, грибов, микроорганизмов). Все эти организмы обитают в основном в почве и в процессе жизнедеятельности создают свою биомассу, в состав которой входит органический углерод. Они также выделяют углекислый газ, создавая «почвенное дыхание». Часто мертвое органическое вещество не полностью разлагается и в почвах накапливается гумус (перегной), играющий важную роль в плодородии почв. Степень минерализации и гумификации органических веществ зависит от многих факторов: влажности, температуры, физических свойств почвы, состава органических остатков и т.д. Под действием бактерий и грибов гумус может разлагаться до углекислоты и минеральных соединений.

Круговорот углерода в Мировом океане. Круговорот углерода в океане отличается от круговорота на суше. В океане слабое звено организмов высших трофических уровней, следовательно, и все звенья круговорота углерода. Время прохождения углерода через трофическое звено океана непродолжительно, а количество выделяемого углекислого газа незначительно.

Океан выполняет роль основного регулятора содержания углекислого газа в атмосфере. Между океаном и атмосферой происходит интенсивный обмен углекислого газа. Воды океана имеют большую растворяющую способность и буферную емкость. Система, состоящая из угольной кислоты и ее солей (карбонатов) является своеобразным депо углекислоты, связана с атмосферой через диффузию СО? из воды в атмосферу и обратно.

В океане днем интенсивно протекает фотосинтез фитопланктона, при этом свободная углекислота усиленно расходуется, карбонаты служат дополнительным источником ее образования. Ночью при увеличении содержания свободной кислоты за счет дыхания животных и растений значительная ее часть снова входит в состав карбонатов. Происходящие процессы идут в направлениях: живое вещество? СО?? Н?СО?? Са(НСО?)?? СаСО?.

В природе некоторое количество органического вещества не подвергается минерализации в результате недостатка кислорода, большой кислотности среды, специфических условий захоронения и т.д. Часть углерода выходит из биологического круговорота в виде неорганических (известняки, мел, кораллы) и органических (сланцы, нефть, уголь) отложений.

Деятельность человека вносит существенные изменения в круговорот углерода на нашей планете. Изменяются ландшафты, типы растительности, биоценозы и их пищевые цепи, осушаются или орошаются огромные площади поверхности суши, улучшается (или ухудшается) плодородие почв, вносятся удобрения и пестициды и т.д. Наиболее опасно поступление углекислого газа в атмосферу в результате сжигания топлива. При этом увеличивается скорость круговорота углерода и укорачивается его цикл.

Круговорот кислорода

Кислород является обязательным условием существования жизни на Земле. Он входит практически во все биологические соединения, участвует в биохимических реакциях окисления органических веществ, обеспечивающих энергией все процессы жизнедеятельности организмов биосферы. Кислород обеспечивает дыхание животных, растений и микроорганизмов в атмосфере, почве, воде, участвует в химических реакциях окисления, происходящих в горных породах, почвах, илах, водоносных горизонтах.

Основные ветви круговорота кислорода:

  • - образование свободного кислорода при фотосинтезе и его поглощение в процессе дыхания живых организмов (растений, животных, микроорганизмов в атмосфере, почве, воде);
  • - образование озонового экрана;
  • - создание окислительно-восстановительных зональностей;
  • - окисление окиси углерода при извержении вулканов, накопление сульфатных осадочных пород, расход кислорода в человеческой деятельности и т.д.; везде участвует молекулярный кислород фотосинтеза.

Круговорот азота

Азот входит в состав биологически важных органических веществ всех живых организмов: белков, нуклеиновых кислот, липопротеидов, ферментов, хлорофилла и т.д. Несмотря на содержание азот (79 %) в составе воздуха, он является дефицитным для живых организмов.

Азот в биосфере находится в недоступной для организмов газообразной форме (N2) - химически мало активной, поэтому он не может непосредственно использоваться высшими растениями (и большинством низших растений) и животным миром. Растения усваивают азот из почвы в виде ионов аммония или нитратных ионов, т.е. так называемый фиксированный азот.

Различают атмосферную, промышленную и биологическую фиксации азота.

Атмосферная фиксация происходит при ионизации атмосферы космическими лучами и при сильных электрических разрядах во время гроз, при этом из молекулярного азота воздуха образуются оксиды азота и аммиака, которые благодаря атмосферным осадкам превращаются в аммонийный, нитритный, нитратный азот и попадают в почву и водные бассейны.

Промышленная фиксация происходит в результате хозяйственной деятельности человека. Атмосфера загрязняется соединениями азота заводами, производящими азотные соединения. Горячие выбросы ТЭЦ, заводов, космических аппаратов, сверхзвуковых самолетов окисляют азот воздуха. Оксиды азота, взаимодействуя с парами воды воздуха с осадками возвращаются на землю, попадают в почву в ионной форме.

Биологическая фиксация играет основную роль в круговороте азота. Ее осуществляют почвенные бактерии:

  • - азотфиксирующие бактерии (и сине-зеленые водоросли);
  • - микроорганизмы, живущие в симбиозе с высшими растениями (клубеньковые бактерии);
  • - аммонифицирующие;
  • - нитрифицирующие;
  • - денитрифицирующие.

Свободно живущие в почве азотфиксирующие аэробные (существующие в присутствии кислорода) бактерии (Azotobacter) способны осуществлять фиксацию молекулярного азота атмосферы за счет энергии, получаемой при окислении органических веществ почвы в процессе дыхания, в конечном итоге связывая его с водородом и вводя в виде аминогруппы (-NH2) в состав аминокислот своего тела. Молекулярный азот способен фиксировать и некоторые анаэробные (живущие в отсутствие кислорода) бактерии, существующие в почве (Clostridium). Отмирая, и те и другие микроорганизмы обогащают почву органическим азотом.

К биологической фиксации молекулярного азота способны и сине-зеленые водоросли, особенно важные для почв рисовых полей.

Наиболее эффективно биологическая фиксация атмосферного азота протекает у бактерий, живущих в симбиозе в клубеньках бобовых растений (клубеньковые бактерии).

Эти бактерии (Rizobium) используют энергию растения-хозяина для фиксации азота, в то же время снабжая наземные органы хозяина доступными ему соединениями азота.

Усваивая соединения азота из почвы в нитратной и аммонийной формах, растения строят необходимые азотсодержащие соединения своего тела (нитратный азот в клетках растений предварительно восстанавливается). Растения-продуценты снабжают азотистыми веществами весь животный мир и человечество. Погибшие растения используются, согласно трофической цепи, биоредуцентами.

Аммонифицирующие микроорганизмы разлагают органические вещества, содержащие азот (аминокислоты, мочевину), с образованием аммиака. Часть органического азота в почве не минерализуется, а превращается в гумусовые вещества, битумы и компоненты осадочных пород.

Аммиак (в виде аммонийного иона) может поступить в корневую систему растений, или использоваться в процессах нитрификации.

Нитрифицирующие микроорганизмы являются хемосинтетиками, используют энергию окисления аммиака до нитратов и нитритов до нитратов для обеспечения всех процессов жизнедеятельности. За счет этой энергии нитрификаторы восстанавливают углекислый газ и строят органические вещества своего тела. Окисление аммиака при нитрификации протекает по реакциям:

NH? + 3O? ? 2HNO? + 2H?O + 600 кДж (148 ккал).

HNO? + O? ? 2HNO? + 198 кДж (48 ккал).

Нитраты, образовавшиеся в процессах нитрификации, вновь поступают в биологический круговорот, поглощаются из почвы корнями растений или после поступления с водным стоком в водные бассейны- фитопланктоном и фитобентосом.

Наряду с организмами, фиксирующими атмосферный азот и нитрифицирующие его, в биосфере существуют микроорганизмы, способные восстанавливать нитраты или нитриты до молекулярного азота. Такие микроорганизмы, называемые денитрификаторами, при недостатке свободного кислорода в водах или почве используют кислород нитратов для окисления органических веществ:

C?H??O?(глюкоза) + 24KNO? ? 24KHCO? + 6CO? + 12N? + 18H?O + энергия

Освобождающаяся при этом энергия служит основой всей жизнедеятельности денитрифицирующих микроорганизмов.

Таким образом, во всех звеньях круговорота исключительную роль играют живые вещества.

В настоящее время все большую роль в азотном балансе почв и, следовательно, во всем круговороте азота в биосфере играет промышленная фиксация атмосферного азота человеком.

Круговорот фосфора

Круговорот фосфора более прост. В то время как резервуаром азота служит воздух, резервуар фосфора - это горные породы, из которых он высвобождается при эрозии.

Углерод, кислород, водород и азот легче и быстрее мигрируют в атмосфере, так как находятся в газообразной форме, образуя в биологических круговоротах газообразные соединения. Для всех остальных элементов, кроме серы необходимых для существования живого вещества, в биологических круговоротах нехарактерно образование газообразных соединений. Эти элементы мигрируют в основном в виде ионов и молекул, растворенных в воде.

Фосфор, усваиваемый растениями в виде ионов ортофосфорной кислоты принимает большое участие в жизнедеятельности всех живых организмов. Он входит в состав АДФ, АТФ, ДНК, РНК и др. соединения.

Круговорот фосфора в биосфере является незамкнутым. В наземных биогеоценозах фосфор после поглощения растениями из почвы по пищевой цепи вновь поступает в виде фосфатов в почву. Основное количество фосфора вновь поглощается корневой системой растений. Частично фосфор может вымываться со стоком дождевых вод из почвы в водные бассейны.

В естественных биогеоценозах часто испытывается недостаток фосфора, причем в щелочной и окисленной среде он находится обычно в виде нерастворимых соединений.

Большое количество фосфатов содержат горные породы литосферы. Часть их постепенно переходит в почву, часть разрабатывается человеком для производства фосфорных удобрений, большая часть выщелачивается и вымывается в гидросферу. Там они используются фитопланктоном и связанными с ними организмами, находящимися на разных трофических уровнях сложных пищевых цепей.

В Мировом океане потери фосфатов из биологического круговорота происходят за счет отложений остатков растений и животных на больших глубинах. Поскольку фосфор перемещается, в основном, из литосферы в гидросферу с водой, то в литосферу он мигрирует биологическим путем (поедание рыб морскими птицами, использование бентосных водорослей и рыбной муки в качестве удобрения и т.д.).

Из всех элементов минерального питания растений фосфор можно считать дефицитным.

Круговорот серы

Для живых организмов сера играет большое значение, т. к. она входит в состав серосодержащих аминокислот (цистина, цистеина, метионина и др.). Находясь в составе белков, серосодержащие аминокислоты поддерживают необходимую трехмерную структуру белковых молекул.

Сера усваивается растениями из почвы только в окисленной форме, в виде иона. В растениях сера восстанавливается и входит в состав аминокислот в виде сульфгидрильных (-SH) и дисульфидных (-S-S-) групп.

Животные усваивают только восстановленную серу, находящуюся в составе органических веществ. После отмирания растительных и животных организмов сера возвращается в почву, где в результате деятельности многочисленных форм микроорганизмов подвергается преобразованиям.

В аэробных условиях некоторые микроорганизмы окисляют органическую серу до сульфатов. Сульфатные ионы, абсорбируясь корнями растений, вновь включаются в биологический круговорот. Часть сульфатов может включаться в водную миграцию и выноситься из почвы. В почвах, богатых гумусовыми веществами, значительное количество серы находится в органических соединениях, что препятствует ее вымыванию.

В анаэробных условиях при разложении органических соединений серы образуется сероводород. Если сульфаты и органические вещества находятся в бескислородной среде, то активируется деятельность сульфатредуцирующих бактерий. Они используют кислород сульфатов для окисления органических веществ и получают таким образом необходимую для своего существования энергию.

Сульфатредуцирующие бактерии распространены в подземных водах, в илах и застойных морских водах. Сероводород является ядом для большинства живых организмов, поэтому его накопление в залитой водой почве, озерах, лиманах и т.д. значительно снижает или даже полностью прекращает жизненные процессы. Такое явление наблюдается в Черном море на глубине ниже 200 м от его поверхности.

Таким образом, для создания благоприятной среды необходимо окисление сероводорода до сульфатных ионов, что уничтожит вредное действие сероводорода, сера перейдет в доступную для растений форму - в виде сернокислых солей. Эту роль выполняет в природе особая группа серобактерий (бесцветные, зеленые, пурпурные) и тионовые бактерии.

Бесцветные серобактерии являются хемосинтетиками: они используют энергию, получаемую при окислении кислородом сероводорода до элементарной серы и при дальнейшем ее окислении до сульфатов.

Окрашенные серобактерии являются фотосинтезирующими организмами, которые используют сероводород в качестве донора водорода для восстановления углекислоты.

Образующаяся элементарная сера у зеленых серобактерий выделяется из клеток, у пурпурных накапливается внутри клеток.

Суммарная реакция этого процесса - фоторедукция:

СО?+ 2H?S свет? (CH?O)+ H?O +2S.

Тионовые бактерии окисляют за счет свободного кислорода элементарную серу и ее различные восстановленные соединения до сульфатов, возвращая ее снова в основное русло биологического круговорота.

В процессах биологического круговорота, где происходит превращение серы, огромную роль играют живые организмы, особенно микроорганизмы.

Главным накопителем серы на нашей планете является Мировой океан, т. к. в него из почвы непрерывно поступают сульфат-ионы. Часть серы из океана возвращается на сушу через атмосферу по схеме сероводород - окисление его до двуокиси серы - растворение последней в дождевой воде с образованием серной кислоты и сульфатов - возвращение серы с атмосферными осадками в почвенный покров Земли.

Круговорот неорганических катионов

Жизненно важными кроме основных элементов, входящих в состав живых организмов (углерода, кислорода, водорода, фосфора и серы), являются и многие другие макро- и микроэлементы - неорганические катионы. В водных бассейнах растения получают необходимые им катионы металлов непосредственно из окружающей среды. На суше главным источником неорганических катионов служит почва, которая получила их в процессе разрушения материнских пород. В растениях поглощенные корневыми системами катионы передвигаются в листья и другие органы; некоторые из них (магний, железо, медь и ряд других) входят в состав биологически важных молекул (хлорофилла, ферментов); другие, оставаясь в свободном виде, участвуют в поддержании необходимых коллоидных свойств протоплазмы клеток и выполняют иные разнообразные функции.

При отмирании живых организмов неорганические катионы в процессе минерализации органических веществ возвращаются в почву. Потери этих компонентов из почвы происходят в результате выщелачивания и выноса катионов металлов с дождевыми водами, отторжения и выноса органического вещества человеком при возделывании сельскохозяйственных растений, рубке леса, скашивании трав на корм скоту и т.д.

Рациональное применение минеральных удобрений, мелиорация почв, внесение органических удобрений, правильная агротехника помогут восстановить и поддержать баланс неорганических катионов в биоценозах биосферы.

Антропогенный круговорот: круговорот ксенобиотиков (ртути, свинца, хрома)

Человечество является частью природы и может существовать только в постоянном взаимодействии с ней.

Существуют сходства и противоречия между естественным и антропогенным круговоротом веществ и энергии, совершающихся в биосфере.

Естественный (биогеохимический) круговорот жизни имеет следующие особенности:

  • - использование солнечной энергии в качестве источника жизни и все ее проявления на основе термодинамических законов;
  • - он осуществляется безотходно, т.е. все продукты его жизнедеятельности, минерализуются и снова включаются в следующий цикл круговорота веществ. При этом за пределы биосферы удаляется отработанная, обесцененная тепловая энергия. При биогеохимическом круговороте веществ образуются отходы, т.е. запасы в виде каменного угля, нефти, газа и других минеральных ресурсов. В отличие от безотходного естественного круговорота антропогенный круговорот сопровождается увеличивающимися с каждым годом отходами.

В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, т. к. с вулканическими газами в воздух поступают нужные элементы (например, азот).

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах ее развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии.

Огромную роль на биогеохимический круговорот оказывает человек, но в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила - разрушительная по отношению к биосфере. В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается.

Антропогенный круговорот не ограничивается энергией солнечного света, улавливаемой зелеными растениями планеты. Человечество использует энергию топлива, гидро- и атомных станций.

Можно утверждать, что антропогенная деятельность на современном этапе представляет собой огромную разрушительную для биосферы силу.

Биосфера обладает особенным свойством - значительной устойчивостью по отношению к загрязняющим веществам. Эта устойчивость основана на естественной способности различных компонентов природной среды к самоочищению и самовосстановлению. Но не безгранично. Возможный глобальный кризис вызвал необходимость построения математической модели биосферы как единого целого (система «Гея») с целью получения информации о возможном состоянии биосферы.

Ксенобиотик - чужеродное для живых организмов вещество, появляющееся в результате антропогенной деятельности (пестициды, препараты бытовой химии и другие загрязнители), способное вызывать нарушение биотических процессов, в т.ч. заболевание или гибель организма. Такие загрязнители не подвергаются биодеградации, а аккумулируются в трофических цепях.

Ртуть - весьма редкий элемент. Она рассеяна в земной коре и только в немногих минералах, таких как киноварь, содержится в концентрированном виде. Ртуть участвует в круговороте вещества в биосфере, мигрируя в газообразном состоянии и в водных растворах.

В атмосферу она поступает из гидросферы при испарении, при выделении из киновари, с вулканическими газами и газами из термальных источников. Часть газообразной ртути в атмосфере переходит в твердую фазу и удаляется из воздушной среды. Выпавшая ртуть поглощается почвами, особенно глинистыми, водой и горными породами. В горючих полезных ископаемых - нефти и каменном угле - ртути содержится до 1 мг/кг. В водной массе океанов примерно 1,6 млрд. т, в донных осадках - 500 млрд.т, в планктоне - 2 млн.т. Речными водами ежегодно с суши выносится около 40 тыс.т, что в 10 раз меньше, чем поступает в атмосферу при испарении (400 тыс.т). На поверхность суши ежегодно выпадает около 100 тыс.т.

Ртуть из естественного компонента природной среды превратилась в один из наиболее опасных для здоровья человека техногенных выбросов в биосферу. Она широко применяется в металлургии, в химической, электротехнической, электронной, целлюлозно-бумажной и фармацевтической промышленности и используется для производства взрывчатых веществ, лаков и красок, а также в медицине. Промышленные стоки и атмосферные выбросы, наряду с ртутными рудниками, заводами по производству ртути и теплоэнергетическими предприятиями (ТЭЦ и котельные), использующими уголь, нефть и нефтепродукты, являются основными источниками загрязнения биосферы этим токсичным компонентом. Кроме того, ртуть входит в состав ртутьорганических пестицидов, используемых в сельском хозяйстве для протравливания семян и защиты культур от вредителей. В организм человека попадает с продуктами питания (яйца, протравленное зерно, мясо животных и птиц, молоко, рыба).

Ртуть в воде и донных отложениях рек

Установлено, что около 80 % ртути, поступающей в природные водоемы, находится в растворенной форме, что в конечном итоге способствует ее распространению на большие расстояния вместе с потоками воды. Чистый элемент не токсичен.

Ртуть содержится в воде придонного ила чаще в относительно безвредных концентрациях. Неорганические соединения ртути превращаются в токсичные органические соединения ртути, такие как метилртуть CH?Hg и этилртуть C?H?Hg, благодаря бактериям, живущим в детритах и осадках, в донном иле озер и рек, в слизи, покрывающей тела рыб, а также в слизи рыбьего желудка. Эти соединения легко растворимы, подвижны и очень ядовиты. Химической основой агрессивного действия ртути является ее сродство с серой, в частности с сероводородной группой в белках. Эти молекулы связываются с хромосомами и клетками головного мозга. Рыбы и моллюски могут накапливать их до концентраций опасных для человека, употребляющего их в пищу, вызывая болезнь "Минамата".

Металлическая ртуть и ее неорганические соединения действуют, в основном, на печень, почки и кишечный тракт, однако в обычных условиях сравнительно быстро выводятся из организма и опасное для организма человека количество не успевает накопиться. Метилртуть и другие алкильные соединения ртути являются гораздо более опасными, т. к. происходит кумуляция - токсин поступает в организм быстрее, чем выводится из организма, действуя на центральную нервную систему.

Донные отложения являются важной характеристикой водных экосистем. Аккумулируя тяжелые металлы, радионуклиды и высокотоксичные органические вещества, донные отложения, с одной стороны, способствуют самоочищению водных сред, а с другой - представляют собой постоянный источник вторичного загрязнения водоемов. Донные отложения - перспективный объект анализа, отражающий многолетнюю картину загрязнения (особенно в малопроточных водоемах). Причем накопление неорганической ртути в донных отложениях наблюдается особенно в устьях рек. Может возникнуть напряженная ситуация, когда адсорбционная способность отложений (ила, осадков) будет исчерпана. Когда будет достигнута адсорбционная емкость, тяжелые металлы, в т.ч. ртуть начнут поступать в воду.

Известно, что в морских анаэробных условиях в отложениях отмерших водорослей ртуть присоединяет водород и переходит в летучие соединения.

При участии микроорганизмов может метилироваться в две стадии металлическая ртуть:

CH?Hg+ ? (CH?)?Hg

Метилртуть в окружающей среде появляется практически только при метилировании неорганической ртути.

Биологический период полувыведения ртути велик, он составляет для большинства тканей организма человека 70-80 дней.

Известно, что в начале пищевой цепочки происходит загрязнение ртутью крупных рыб, например меч-рыбы, тунца. Не безинтересно при этом отметить, что в еще большей степени, чем в рыбах, ртуть накапливается (аккумулируется) в устрицах.

Ртуть попадает в организм человека при дыхании, с пищей и через кожу по следующей схеме:

Во-первых, происходит транформация ртути. Этот элемент встречается в природе в нескольких формах.

Металлическая ртуть, применяемая в термометрах, и ее неорганические соли (например, хлорид) выводятся из организма сравнительно быстро.

Гораздо более ядовиты алкильные соединения ртути, в частности метил- и этилртуть. Эти соединения очень медленно выводятся из организма - за сутки всего лишь около 1% общего количества. Хотя большая часть ртути, попадающей в природные воды, содержится там в виде неорганических соединений, в рыбе она всегда оказывается в форме гораздо ядовитой метилртути. Бактерии в донном иле озер и рек, в слизи, покрывающей тела рыб, а также в слизи рыбьего желудка способны превращать неорганические соединения ртути в метилртуть.

Во-вторых, избирательное накопление, или биологическое накопление (концентрирование), повышает содержание ртути в рыбе и моллюсках до уровней во много раз выше, чем в воде залива. Рыбы и моллюски, обитающие в реке, накапливают метилртуть до концентраций, опасных для человека, использующего их в пищу.

% мирового улова рыбы содержит ртуть в количестве не более 0,5 мг/кг, а 95% - ниже 0,3 мг/кг. Почти вся ртуть в рыбе находится в виде метилртути.

Учитывая разную токсичность ртутных соединений для человека в пищевых продуктах необходимо определять неорганическую (общую) и органически связанную ртуть. У нас определяется только общее содержание ртути. По медико-биологическим требованиям содержание ртути в пресноводной хищной рыбе допускается 0,6 мг/кг, в морской - 0,4 мг/кг, в пресноводной не хищной только 0,3 мг/кг, а в тунцовых до 0,7 мг/кг. В продуктах детского питания содержание ртути не должно превышать 0,02 мг/кг в мясных консервах, 0,15 мг/кг в рыбных консервах, в остальных - 0,01 мг/кг.

Свинец присутствует практически во всех компонентах природной среды. В земной коре его содержится 0,0016 %. Естественный уровень свинца в атмосфере 0,0005 мг/м3. Большая часть его осаждается с пылью, примерно 40 % выпадает с атмосферными осадками. Растения получают свинец из почвы, воды и атмосферных выпадений, а животные - потребляя растения и воду. В организм человека металл попадает вместе с пищей, водой и пылью.

Основным источником загрязнения биосферы свинцом являются бензиновые двигатели, выхлопные газы которых содержат триэтилсвинец, теплоэнергетические предприятия, сжигающие каменный уголь, горнодобывающая, металлургическая и химическая промышленность. Значительное количество свинца вносится в почву вместе со сточными водами, используемыми в качестве удобрения. Для тушения горящего реактора Чернобыльской АЭС также использовался свинец, который поступил в воздушный бассейн и рассеялся на обширных территориях. При увеличении загрязнения окружающей среды свинцом возрастает его отложение в костях, волосах, печени.

Хром. Наиболее опасен токсичный хром (6+), который мобилизуется в кислых и щелочных почвах, в пресных и морских водах. В морской воде хром на 10 - 20 % представлен формой Cr (3+), на 25 - 40 % - Cr (6+), на 45 - 65 % - органической формой. В интервале рН 5 - 7 преобладает Cr (3+), а при рН > 7 - Cr (6+). Известно, что Cr (6+) и органические соединения хрома не соосаждаются с гидроксидом железа в морской воде.

Природные круговороты веществ являются практически замкнутыми. В естественных экосистемах вещество и энергия расходуются экономно и отходы одних организмов служат важным условием существования других. Антропогенный круговорот веществ сопровождается огромным расходом природных ресурсов и большим количеством отходов, вызывающих загрязнение окружающей среды. Создание даже самых совершенных очистных сооружений, не решает проблему, поэтому необходимо разрабатывать мало- и безотходные технологии, позволяющие сделать как можно более замкнутым антропогенный круговорот. Теоретически можно создать безотходную технологию, однако реальны малоотходные технологии.

Адаптация к природным явлениям

Адаптации - различные приспособления к среде обитания, выработавшиеся у организмов (от наипростейших до высших) в процессе эволюции. Способность к адаптации - одно из основных свойств живых, обеспечивающих возможность своего существования.

К основным факторам, развивающим процесс адаптации относятся: наследственность, изменчивость, естественный (и искусственный) отбор.

Толерантность может измениться, если организм попадает в иные внешние условия. Попадая в такие условия, он через некоторое время как бы привыкает, адаптируется к ним (от лат. адаптацио - приспособлять). Следствием этого является изменение положений физиологического оптимума.

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью.

Чем шире диапазон экологического фактора, в пределах которого данный организм может жить, тем больше его экологическая пластичность. По степени пластичности выделяют два типа организмов: стенобионтные (стеноэки) и эврибионтные (эвриэки). Таким образом, стенобионты экологически непластичны (например, камбала живет только в соленой воде, а карась только в пресной), т.е. маловыносливы, а эврибионты экологически пластичны, т.е. более выносливы (например, трехиглая колюшка может жить как в пресных, так и в соленых водах).

Адаптации многомерны, так как организм должен одновременно соответствовать многим различным факторам окружающей среды.

Существует три основных пути приспособления организмов к условиям окружающей среды: активный; пассивный; избегание неблагоприятных воздействий.

Активный путь адаптации - усиление сопротивляемости, развитие регуляторных процессов, позволяющих осуществлять все жизненные функции организма, несмотря на отклонения фактора от оптимума. Например, теплокровные животные поддерживают постоянную температуру тела - оптимальную для биохимических процессов, протекающих в нем.

Пассивный путь адаптации - подчинение жизненных функций организмов изменению факторов среды. Например, при неблагоприятных условиях среды многие организмы переходят в состояние анабиоза (скрытой жизни), при котором практически останавливается обмен веществ в организме (состояние зимнего покоя, оцепенение насекомых, спячка, сохранение спор в почве в виде спор и семян).

Избегание неблагоприятных воздействий - выработка приспособлений, поведения организмов (адаптации), которые помогают избежать неблагоприятные условия. При этом адаптации могут быть: морфологические (изменяется строение организма: видоизменение листьев у кактуса), физиологические (верблюд обеспечивает себя влагой за счет окисления запасов жира), этологические (изменения поведения: сезонные миграции птиц, спячка зимой).

Живые организмы хорошо адаптированы к периодическим факторам. Непериодические факторы могут вызвать болезни и даже смерть организма (например, лекарственные препараты, ядохимикаты). Однако при длительном их воздействии также может возникнуть адаптация к ним.

Организмы адаптировались к суточной, сезонной, приливно-отливной ритмикам, ритмам солнечной активности, лунным фазам и другим строго периодичным явлениям. Так, сезонную адаптацию различают как сезонность в природе и состояние зимнего покоя.

Сезонность в природе. Ведущим значением для растений и животных при приспособлении организмов является годовой ход температуры. Период, благоприятный для жизни, в среднем для нашей страны, продолжается около шести месяцев (весна, лето). Еще до прихода устойчивых морозов в природе наступает период зимнего покоя.

Состояние зимнего покоя. Зимний покой не просто остановка развития в результате низких температур, а сложное физиологическое приспособление, причем наступающего лишь на определенной стадии развития. Например, малярийный комар и бабочка-крапивница зимуют в стадии взрослого насекомого, бабочка-капустница - в стадии куколки, непарный шелкопряд - в стадии яйца.

Биоритмы. У каждого вида в процессе эволюции выработался характерный годичный цикл интенсивного роста и развития, размножения, подготовки к зиме и зимовки. Это явление получило название биологического ритма. Совпадение каждого периода жизненного цикла с соответствующим временем года имеет решающее значение для существования вида.

Главным фактором регуляции сезонных циклов у большинства растений и животных является изменение продолжительности дня.

Биоритмы бывают:

экзогенные (внешние) ритмы (возникают как реакция на периодические изменения среды (смену дня и ночи, сезонов, солнечной активности) эндогенные (внутренние ритмы) генерируются самим организмом

В свою очередь эндогенные делятся на:

Физиологические ритмы (биение сердца, дыхание, работа желез внутренней секреции, синтез ДНК, РНК, белков, работа ферментов, деление клеток и др.)

Экологические ритмы (суточные, годичные, приливные, лунные и др.)

Ритмичность имеют процессы синтеза ДНК, РНК, белков, деление клеток, биение сердца, дыхание и т.д. Внешние воздействия могут сдвигать фазы этих ритмов и менять их амплитуду.

Физиологические ритмы варьируют в зависимости от состояния организма, экологические - более стабильны и соответствуют внешним ритмам. При эндогенных ритмах организм может ориентироваться во времени и заранее готовиться к предстоящим изменениям среды - это биологические часы организма. Многим живым организмам свойственны циркадные и цирканные ритмы.

Циркадные ритмы (околосуточные) - повторяющиеся интенсивности и характера биологических процессов и явлений с периодом от 20 до 28 часов. Циркадные ритмы связаны с активностью животных и растений в течение суток и, как правило, зависят от температуры и интенсивности света. Например, летучие мыши летают в сумерки и отдыхают днем, многие планктонные организмы ночью держатся у поверхности воды, а днем спускаются в глубину.

С влиянием света - фотопериодом - связаны сезонные биологические ритмы. Реакция организмов на продолжительность дня получила название фотопериодизма. Фотопериодизм - это общее важное приспособление, регулирующее сезонные явления у самых разных организмов. Изучение фотопериодизма растений и животных показало, что реакция организмов на свет основана на чередовании в течение суток периодов света и темноты определенной длительности. Реакция организмов (от одноклеточных до человека) на продолжительность дня и ночи показывает, что они способны измерять время, т.е. обладают какими-то биологическими часами. Биологические часы, кроме сезонных циклов, управляют многими другими биологическими явлениями, определяют правильный суточный ритм как активности целых организмов, так и процессов, происходящих даже на уровне клеток, в частности, клеточных делений.

Универсальным свойством всего живого, от вирусов и микроорганизмов до высших растений и животных, является способность давать мутации - внезапные, естественные и вызываемые искусственно, наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма. Мутационная изменчивость не отвечает условиям окружающей среды и, как правило, нарушает существующие адаптации.

Впадают в диапаузу (продолжительная остановка в развитии) многие насекомые на определенной стадии развития, которую не надо путать с состоянием покоя в неблагоприятных условиях. На размножение многих морских животных влияют лунные ритмы.

Цирканные (окологодичные) ритмы - повторяющиеся изменения интенсивности и характера биологических процессов и явлений с периодом от 10 до 13 месяцев.

Физическое и психологическое состояние человека также имеет ритмический характер.

Нарушенный ритм труда и отдыха снижает работоспособность и оказывает неблагоприятное влияние на здоровье человека. Состояние человека в экстремальных условиях будет зависеть от степени подготовленности его к этим условиям, поскольку времени на адаптацию и восстановление практически нет.

Трофическая сеть

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища - потребитель». Так, траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру - трофическую сеть .

Трофический уровень

Трофический уровень - условная единица, обозначающая удалённость от продуцентов в трофической цепи данной экосистемы. В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическим уровнем.

Круговорот веществ и потоки энергии в экосистемах

Питание - основной способ движения веществ и энергии. Организмы в экосистеме связаны общностью энергии и питательных веществ, которые необходимы для поддержания жизни. Главным источником энергии для подавляющего большинства живых организмов на Земле является Солнце. Фотосинтезирующие организмы (зеленые растения, цианобактерии, некоторые бактерии) непосредственно используют энергию солнечного света. При этом из углекислого газа и воды образуются сложные органические вещества, в которых часть солнечной энергии накапливается в форме химической энергии. Органические вещества служат источником энергии не только для самого растения, но и для других организмов экосистемы. Высвобождение заключенной в пище энергии происходит в процессе дыхания. Продукты дыхания - углекислый газ, вода и неорганические вещества - могут вновь использоваться зелеными растениями. В итоге вещества в данной экосистеме совершают бесконечный круговорот. При этом энергия, заключенная в пище, не совершает круговорот, а постепенно превращается в тепловую энергию и уходит из экосистемы. Поэтому необходимым условием существования экосистемы является постоянный приток энергии извне. Таким образом, основу экосистемы составляют автотрофные организмы - продуценты (производители, созидатели), которые в процессе фотосинтеза создают богатую энергией пищу - первичное органическое вещество. В наземных экосистемах наиболее важная роль принадлежит высшим растениям, которые, образуя органические вещества, дают начало всем трофическим связям в экосистеме, служат субстратом для многих животных, грибов и микроорганизмов, активно влияют на микроклимат биотопа. В водных экосистемах главными производителями первичного органического вещества являются водоросли. Готовые органические вещества используют для получения и накопление энергии гетеротрофы, или консументы (потребители). К гетеротрофам относятся растительноядные животные (консументы I Порядка), плотоядные, живущие за счет растительноядных форм (консументы II порядка), потребляющие других плотоядных (консументы Ш порядка) и т. д. Особую группу консументов составляют редуценты (разрушители, или деструкторы), разлагающие органические остатки продуцентов и консументов до простых неорганических соединений, которые зат-ем используются продуцентами. К редуцентам относятся главным образом микрорганизмы - бактерии и грибы. В наземных экосистемах особенно важное значение имеют почвенные редуценты, вовлекающие в общий круговорот органические вещества отмерших растений (они потребляют до 90% первичной продукции леса). Таким образом, каждый живой организм в составе экосистемы занимает определенную экологическую нишу (место) в сложной системе экологических взаимоотношений с другими организмами и абиотическими условиями среды.

Биологический и геологический круговороты.

Процессы фотосинтеза органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес). Громадные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и испарения. Это приводит к тому, что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а вся остальная вода океана – приблизительно за год. Весь углекислый газ атмосферы обновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота, 210 млрд т фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). Существование этих круговоротов придаёт экосистеме определённую устойчивость.

Различают два основных круговорота: большой (геологический) и малый (биотический). Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь. Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества. Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки. Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов.

Роль Человека.

Человеку подвластно менять силу действия и число лимитирующих факторов, а также расширять или, наоборот, сужать границы оптимальных значений факторов среды. Например, снятие урожая неизбежно связано с обеднением почв элементами минерального питания растений и переводом некоторых из них в категорию лимитирующих факторов. Различного рода мелиорации земель (обводнение, осушение, внесение удобрений и т. п.) оптимизируют факторы, снимают их лимитирующий эффект. Человек неизмеримо расширил свои адаптационные возможности за счет кондиционирования условий своей среды (одежда, жилище, новые материалы и т.п.) и тем самым резко уменьшил зависимость от природной среды и представляемых ею ресурсов. Например, в рационе человека пищевые ресурсы дикой природы составляют только 10-15%. Остальные пищевые потребности удовлетворяются за счет культурного хозяйства. Следствием уменьшения зависимости от факторов среды является расширение человеком своего ареала на всю планету и снятие естественных механизмов регулирования численности популяции.

Человек изменил этому принципу цепей питания и экологических пирамид по отношению, как к своей популяции, так и к другим видам (сортам, породам), особенно выращиваемым в культурном хозяйстве. Такое несоответствие природным экосистемам стало возможным благодаря присвоению и вложению в системы дополнительной энергии. Нарушение правил экологических пирамид оказывается неоправданно дорогим. Оно неизбежно сопровождается изменениями в круговоротах веществ, накоплением отходов и загрязнением среды. В качестве примера можно назвать животноводческие комплексы с их экологическими проблемами. Нарушение правил пирамид обусловливается также тем, что потребительские интересы человека вышли за пределы биологических ресурсов в целом. В круг его интересов включаются продукты (ресурсы) прежних геологических эпох, а многие из производимых продуктов становятся тупиковым звеном (отходами и загрязнителями). Людям Земли только как биологическому виду ежедневно требуется около 2 млн. т пищи, 10 млрд. м3 кислорода. Помимо этого, добывается и перерабатывается почти 30 млн. т веществ, сжигается около 30 млн. т топлива, используется 2 млрд. м3 воды и 65 млрд. м3 кислорода для технических нужд

В силу своей всеядности люди начинают поедать все более разнообразные организмы, для чего необходимы самые различные способы отлова добычи или поиска растений. Конечно, приходится также придумывать способы, как сделать добычу съедобной. Одно дело - изжарить кролика и совсем другое - приготовить на обед медузу. Только изощренный ум мог додуматься употребить в пищу, например, маниок, клубни которого горьки, да еще содержат синильную кислоту. Однако по всей Бразилии, да и не только там, маниок выращивают и поедают в количествах, сравнимых с поеданием в России картофеля. А ведь придумать технологию его обработки было весьма сложным делом.

Поедая самые различные организмы, человек включается во множество цепей питания, изымая дополнительную органику и заканчивая эти цепи собой. Он везде оказывается хищником высшего порядка. Так человек стал укорачивать цепи питания во множестве экосистем, а чем короче такая цепь, тем быстрее оборот вещества и энергии.

Также деятельность человека связана с сильным преобразованием естественных местообитаний. Современный человек предпочитает не изменяться в соответствии с условиями среды, а изменять сами эти условия. Поэтому он тратит значительные интеллектуальные и технические усилия на преобразование окружающей среды. Вспахав пространство луга и засеяв его нужными растениями, пахарь уже кардинально изменил среду. От множества растений луга он оставил одно, да и то чаще всего здесь чужое. Почву и ее фауну, сформированные здесь за много сотен лет, он преобразовал в несколько часов. В итоге ликвидирован ресурс практически всех видов животных, их кормовые растения исчезли. Преобразованное пространство стало непригодным для многих местных растений, а для других - недостижимо. Хозяин посева оберегает свое поле, поливает его гербицидами, сражается с потребителями-конкурентами.

Как мы помним, в экосистемах человек обитает не один, а с огромным количеством соседей - растительных и животных организмов. Далеко не всем им подходит эта преобразованная среда. Многие, особенно примитивные формы жизни, легко приспосабливаются к изменившимся условиям. Подавляющему же числу сложных организмов новая среда не годится. Они покидают эти места или погибают. Так что любое преобразование природы всегда приводит к гибели множества организмов .

Поедание . Диапазон кормов этого зоологического вида, наверное, самый широкий на планете. Человек - удивительный эврифаг (многояд) и ест практически все. Огромен перечень животных в его меню, куда наряду с традиционными коровами, овцами и домашней птицей входят термиты, саранча, кивсяки и сколопендры, некоторые пауки. Как лакомство поедаются многими народами личинки различных насекомых - пчел, древесных жуков. Жители Африки с аппетитом поедают громадных личинок жука голиафа, там, где он водится. Разнообразные ящерицы, змеи, черепахи и лягушки тоже прочно вошли в рационы людей. Обитатели воды - рыбы и моллюски - это традиционная пища еще со времен кроманьонца. Однако и здесь рацион вида расширился, включив огромную массу животных от китов до некоторых медуз и эвфаузид.

Экологи, исследуя рационы животных, особенно тех, что являются пищевыми конкурентами человека, отмечают у многих из них поразительную разноядность. Например, типичный полифаг, водяная полевка, уничтожающая посевы крестьян в южной части Западной Сибири, способна поедать более 300 видов растений. По мере изучения этого зверька составляются все более длинные списки пригодных для него кормов. Человек же в роли растительноядного животного (первичного консумента) далеко превзошел все прочие виды. Полных списков его пищевых растений на планете пока никто не составлял, но длину их нетрудно предположить. Так, в японской кухне используются для приготовления различных блюд бутоны цветков около 300 видов растений. Китайская же кухня еще более изощренна и разнообразна. А если добавить сюда списки пищевых видов растений из поваренных книг жителей тропической зоны!?

И животных, и растения человек использует в пищевых целях со все возрастающей интенсивностью. Если он не ест каких-то животных непосредственно, то скармливает их своим кормовым животным или удобряет ими поля. Человек расточителен и часто даже деликатесные виды наряду с питанием пускает как кормовые, а то и как удобрения. Например, история промысла морского полосатого окуня - рыбы почти 2-метровой длины и 50 - 70 кг веса. По вкусовым качествам она превосходит атлантического лосося. Этот окунь добывался в начале XVII века у берегов Новой Англии в огромных количествах. Большая часть таких уловов шла на удобрение земельных участков местных жителей. Колонисты фермеры сотни тонн этой рыбы закапывали в свои кукурузные поля. В районе Ньюфаундленда многие тонны атлантического лосося в начале XIX века использовали для удобрения полей. То же происходило при избыточном лове трески и осетра. Построены громадные заводы для переработки на удобрения и корма для животных макрели, сельди, мойвы и других морских рыб. В Ньюфаундленде в начале XVIII века мясо громадных морских раков омаров (они весили до 10 - 12 кг) использовали для наживки при лове трески, а также для откорма домашних животных. Каждое картофельное поле было усеяно панцирями этих ракообразных, ибо для удобрения под каждый картофельный куст закладывали по 2 - 3 омара. До середины XX столетия этими гигантскими и очень вкусными раками откармливали скот в некоторых районах Ньюфаундленда. Даже такая просвещенная страна, как Россия, до самого конца XX века поступала расточительно. В 1998 году по телевизору не очень сытому ее населению показывали, как на российском Дальнем Востоке бульдозерами зарывали в землю сотни тонн деликатесных лососевых рыб. Люди не смогли утилизировать свои уловы!

Человек обеспечил свое превращение в гиперэврибионта не за счет биологических механизмов, а за счет технических средств, и поэтому он в значительной мере утратил потенциал биологических адаптации. В этом причина того, что человек находится в числе первых кандидатов на уход с арены жизни в результате им же вызываемых изменений среды. Отсюда важный вывод: если современная ниша человека прежде всего результат разумной деятельности, власти над окружением, следовательно, разум должен выступать основной движущей силой ее изменения.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26

Все вещества на планете находятся в процессе кругово­рота. Солнечная энергия вызывает на Земле два круговоро­та веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризует­ся двумя важными моментами: он осуществляется на про­тяжении всего геологического развития Земли и представ­ляет собой современный планетарный процесс, принимаю­щий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и раз­рушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и хими­ческих элементов. Значительную роль в этих процессах иг­рали и продолжают играть термические свойства поверх­ности суши и воды: поглощение и отражение солнечных лу­чей, теплопроводность и теплоемкость. Неустойчивый гид­ротермический режим поверхности Земли вместе с плане­тарной системой циркуляции атмосферы обусловливал гео­логический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и совре­менных геосфер. Со становлением биосферы в большой кру­говорот включились продукты жизнедеятельности орга­низмов. Геологический круговорот поставляет живым ор­ганизмам элементы питания и во многом определяет усло­вия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и дру­гие - участвуют в большом круговороте, проходя от глу­бинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации магмы, поступив на поверхность литосферы из глубин Зем­ли, подвергается разложению, выветриванию в области био­сферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глу­бину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис.).


Наиболее интенсивному и быстрому круговороту подвер­гаются легкоподвижные вещества - газы и природные во­ды, составляющие атмосферу и гидросферу планеты. Зна­чительно медленнее совершает круговорот материал литос­феры. В целом каждый круговорот любого химического элемента является частью общего большого круговорота ве­ществ на Земле, и все они тесно связаны между собой. Жи­вое вещество биосферы в этом круговороте выполняет ог­ромную работу по перераспределению химических элемен­тов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.

Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, гриба­ми, микроорганизмами и почвой. Суть биологического круго­ворота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических ве­ществ и их разрушения. Начальный этап возникновения ор­ганических веществ обусловлен фотосинтезом зеленых расте­ний, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, маг­ния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I по­рядка) поглощают соединения этих элементов уже в виде пи­щи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потреб­ляя пищу более сложного состава, включающую белки, жи­ры, аминокислоты и другие вещества. В процессе разруше­ния микроорганизмами (редуцентами) органических ве­ществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следую­щий виток биологического круговорота (рис. 33).


Возникновение и развитие ноосферы

Эволюция органического мира на Земле прошла несколько этапов.Первый –связан с возникновением биологического круговорота веществ в биосфере. Второй- сопровождался формированием многоклеточных организмов. Эти два этапа называют биогенезом.Третий этап связан с появлением человеческого общества, под влиянием которого в современных условиях происходит эволюция биосферы и превращение ее в сферу разума-ноосферу(от гр.-разум,-шар). Ноосфера- новое состояние биосферы, когда разумная деятельность человека становится главным фактором, обуславливающим ее развитие. Термин «»ноосфера» был введен Э. Леруа. В. И. Вернадский углубил и развил учение о ноосфере. Он писал: «Ноосфера есть новое геологическое явление на нашей планете.В ней человек становится крупной геологической силой». В. И. Вернадский выделил необходимые предпосылки для создания ноосферы:1.Человечество стало единым целым.2.Возможность мгновенного обмена информацией.3.Реальное равенство людей.4.Рост общего уровня жизни.5.Использование новых видов энергии. 6.Исключение войн из жизни общества. Создание этих предпосылок становится возможным в результате взрыва научной мысли в ХХ веке.

Тема – 6. Природа – человек: системный подход. Цель лекции: Сформировать целостное представление о системных постулатах экологии.

Основные вопросы:1.Понятие о системе и о сложных биосистемах.2.Особенности биологических систем.3.Системные постулаты: закон всеобщей связи, экологические законы Б. Коммонера, Закон больших чисел, Принцип Ле Шателье, Закон обратной связи в природе и закон константности количества живого вещества.4.Модели взаимодействий в системах «природа- человек» и « человек-экономика-биота-среда».

Экологическая система – главный объект экологии. Экология по своей сущности системна и в теоретическом облике близка к общей теории систем. Согласно общей теории систем система- это реальная или мыслимая совокупность частей, целостные свойства которой определяются взаимодействием между частями (элементами) системы. В реальной жизни,систему определяют как совокуность объектов, объединенных некоторой формой регулярного взаимодействий или взаимозависимости для выполнения заданной функции. В материальном существуют определенные иерархии-упорядоченные последовательности пространственно-временного соподчинения и усложнения систем. Все многообразия нашего мира представить в виде трех последовательно возникших иерархий. Это основная,природная, физико- химико- биологическая(Ф,Х,Б) иерархия и побочные две, возникшие на ее основе, социальная (С) и техническая (Т) иерархии. Существование последних по совокупно­сти обратных связей определенным образом влияет на основную иерархию. Объединение систем из разных иерархий приводит к «смешанным» классам систем. Так, объединение систем из физико-химической части иерархии (Ф, X - «среда») с живыми системами биологической части иерархии (Б - «биота») приводит к смешан­ному классу систем, называемых экологическими. А объединение систем из иерархий С

(«человек») и Т («техника») приводит к клас­су хозяйственных, или технико-экономических, систем.

Рис. . Иерархии материальных систем:

Ф, X - физико-химическая, Б - биологическая, С - социальная, Т - техническая

Должно быть понятно, что отображенное на схеме воздействие человеческого общества на природу, опосредованное техникой и технологиями (техногенез), относится ко всей иерархии природных систем: нижняя ветвь - к абиотической среде, верхняя - к биоте биосферы. Ниже будет рассмотрена сопряженность экологических и технико-экономических сторон этого взаимодействия.

Всем системам присущи некоторые общие свойства:

1. Каждая система имеет определенную структуру, определяе­мую формой пространственно-временных связей или взаимодейст вий между элементами системы. Структурная упорядоченность сама по себе не определяет организацию системы. Систему можно на­звать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей опреде­ленную работу) структуры, либо, напротив, зависит от деятельности такой структуры.

2. Согласно принципу необходимого разнообразия система не мо­жет состоять из идентичных элементов, лишенных индивидуально­сти. Нижний предел разнообразия - не менее двух элементов (про­тон и электрон, белок и нуклеиновая кислота, «он» и «она»), верх­ний - бесконечность. Разнообразие - важнейшая информацион­ная характеристика системы. Оно отличается от числа разновидно­стей элементов и может быть измерено.3.Свойства системы невозможно постичь лишь на основании свойств ее частей. Решающее значение имеет именно взаимодейст­вие между элементами. По отдельным деталям машины перед сбор­кой нельзя судить о ее действии. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Совместное действие двух или более различных факторов на организм почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, опре­деляет эмерджентность системы.

4.Выделение системы делит ее мир на две части - саму систе­му и ее среду. В зависимости от наличия (отсутствия) обмена веще­ством, энергией и информацией со средой принципиально возмож­ны: изолированные системы (никакой обмен невозможен); замкну­тые системы (невозможен обмен веществом); открытые системы(возможен обмен веществом и энергией). Обмен энергии определя­ет обмен информацией. В живой природе существуют только от­крытые динамические системы, между внутренними элементами ко­торых и элементами среды осуществляются переносы вещества, энергии и информации. Любая живая система - от вируса до биосферы - представляет собой открытую динамическую систему.

5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воз­
действиям определяют ее способность к самосохранению благодаря качествам организованности, выносливости и устойчивости. Внеш­нее воздействие на систему, превосходящее силу и гибкость еевнутренних взаимодействий, приводит к необратимым изменениям
и гибели системы. Устойчивость динамической системы поддержи­вается непрерывно выполняемой ею внешней циклической работой. Для этого необходимы поток и преобразование энергии в сие. теме. Вероятность достижения главной цели системы - самосохранения (в том числе и путем самовоспроизведения) определяется кaк ее потенциальная эффективность.

6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а изменение реакции системы, связанное с изменением структуры и направленное на стабилизацию поведения, -.как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается кaк развитие, или эволюция, системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в направлении от более вероятной к менее вероятной организации, т.е. развитие идет по пути усложнения организации и образования подсистем в структуре системы. В природе все формы поведения систем - от элементарной реакции до глобальной эволюции - существенно нелинейны. Важной особенностью эволюции сложных систем является
неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации - раздвоением, расщеплением прежнего пути эволюции. 0т выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира частиц, веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайным импульсом. Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть
осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений.По мере возрастания сложности систем у них появляются новые эмерджентные качества. При этом сохраняются качества более простых систем. Поэтому общее разнообразие качеств системы возрастает по мере ее усложнения (рис. 2.2).

Рис. 2.2. Закономерности изменений свойств иерархий систем с повышением их уровня (по Флейшману, 1982):

1 - разнообразие, 2 - устойчивость, 3 - эмерджентность, 4 - сложность, 5 - неидентичность, 6 - распространенность

В порядке возрастания активности по отношению к внешним воз­действиям качества системы могут быть упорядочены в следующей последовательности: 1 - устойчивость, 2 - надежность, обусловлен­ная информированностью о среде (помехоустойчивость), 3 - управляемость, 4 - самоорганизация. В этом ряду каждое последующее ка­чество имеет смысл при наличии предыдущего.

Пар Сложность структуры системы опреде­ляется числом п ее элементов и числом т

связей между ними. Если в какой-либо системе исследуется число частных дискретных состояний, то сложность системы С определя­ется логарифмом числа связей:

C=lgm. (2.1)

Системы условно классифицируются по сложности следующим образом: 1) системы, имеющие до тысячи состояний (О < 3), относятся к простым; 2) системы, имеющие до миллиона состояний (3 < С < 6), являют собой сложные системы; 3) системы с числом состояний свыше миллиона (С > 6) идентифицируются как очень сложные.

Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых моле­кулярных состояний превышает последнее значение.

Геологический кругооборот веществ имеет наибольшую скорость в горизонтальном направлении между сушей и морем. Смысл большого кругооборота в том, что горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе растворимые в воде питательные вещества, сносятся потоками воды в Мировой океан с образованием морских напластований и возвращаются на сушу лишь частично, например, с осадками или с извлеченными человеком из воды организмами. Далее в течение длительного временного отрезка протекают медленные геотектонические изменения - движение материков, поднятие и опускание морского дна, вулканические извержения и т.д., в результате которых образовавшиеся напластования возвращаются на сушу и процесс начинается вновь.

Большой геологический круговорот вещества. Под действием денудационных процессов происходит разрушение горных пород и осадконакопление. Образуются осадочные породы. В областях устойчивого погружения (обычно это океаническое дно) вещество географической оболочки входит в глубокие слои Земли. Далее под действием температуры и давления идут метаморфические процессы, в результате которых образуются горные породы, вещество продвигается ближе к центру Земли. В недрах Земли в условиях очень высоких температур происходит магматизм: породы плавятся, поднимаются в виде магмы по разломам к земной поверхности и выливаются на поверхность при извержениях. Таким образом, осуществляется круговорот вещества. Геологический круговорот осложняется, если учитывать обмен веществом с космическим пространством. Большой геологический круговорот не является замкнутым в том смысле, что какая-то частица вещества, попавшая в недра Земли, совсем не обязательно выйдет на поверхность, и наоборот, частица, поднимающаяся при извержении, могла никогда раньше не находиться на земной поверхности


Основные источники энергии природных процессов на Земле

Излучение Солнца - основной источник энергии на Земле. Его мощность характеризуется солнечной постоянной - количеством энергии, проходящей через площадку единичной площади, перпендикулярную солнечным лучам. На расстоянии в одну астрономическую единицу (то есть на орбите Земли) эта постоянная равна приблизительно 1370 Вт/м².

Живые организмы используют энергию Солнца (фотосинтез) и энергию химических связей (хемосинтез). Эта энергия может использоваться в различных естественных и искусственных процессах. Треть всей энергии отражается атмосферой, 0,02 % используется растениями для фотосинтеза, а остальное на поддержание многих природных процессов – обогрев земли, океана, атмосферы движение возд. масс. Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии (солнечными электростанциями) или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива.

Это огромная энергия ведет к всеобщему потеплению,потому что после того,как прошла через природные процессы излучается обратно и атмосфера не дает ей уйти обратно.

2. Внутренняя энергия Земли; проявление – вулканы, горячие источники


18. Преобразования энергии биотического и абиотического происхождения

В функционирующей природной экосистеме не существует отходов. Все организмы, живые или мертвые, потенциально являются пищей для других организмов: гусеница ест листву, дрозд питается гусеницами, ястреб способен съесть дрозда. Когда растения, гусеница, дрозд и ястреб погибают, они в свою очередь перерабатываются редуцентами.

Все организмы, пользующиеся одним типом пищи, принадлежат к одному трофическому уровню.

Организмы природных экосистем вовлечены в сложную сеть многих связанных между собой пищевых цепей. Такая сеть называется пищевой сетью.

Пирамиды энергетических потоков: С каждым переходом из одного трофического уровня в другой в пределах пищевой цепи или сети совершается работа и в окружающую среду выделяется тепловая энергия, а количество энергии высокого качества, используемой организмами следующего трофического уровня, снижается.

Правило 10%: при переходе с одного трофического уровня на другой 90% энергии теряется, и 10% передается на следующий уровень.

Чем длиннее пищевая цепь, тем больше теряется полезной энергии. Поэтому длина пищевой цепи обычно не превышает 4 - 5 звеньев.

Энергетика ландшафтной сферы Земли:

1) солнечная энергия: тепловая, лучистая

2) поток тепловой энергии из недр Земли

3) энергия приливных течений

4) тектоническая энергия

5) ассимиляция энергии при фотосинтезе


Круговорот воды в природе

Круговорот воды в природе – процесс циклического перемещения воды в земной биосфере. Состоит из испарения, конденсации и осадков (атмосферные осадки частично испаряются, частично образуют временные и постоянные водостоки и водоемы, частично - просачиваются в землю и образуют подземные воды), а также процессы дегазации мантии: из мантии непрервыно поступает вода. вода обнаружена даже на огромной глубине.

Моря теряют из-за испарения больше воды, чем получают с осадками, на суше - положение обратное. Вода непрерывно циркулирует на земном шаре, при этом её общее количество остаётся неизменным.

75% поверхности Земли покрыты водой. Водная оболочка Земли – гидросфера. Большую ее часть составляет соленая вода морей и океанов, а меньшую - пресная вода озер, рек, ледников, грунтовые воды и водяной пар.

На земле вода существует в трех агрегатных состояниях: жидком, твердом и газообразном. Без воды невозможно существование живых организмов. В любом организме вода является средой, в которой происходят химические реакции, без которых не могут жить живые организмы. Вода является самым ценным и самым необходимым веществом для жизнедеятельности живых организмов.

Различают несколько видов круговоротов воды в природе:

Большой, или мировой, круговорот - водяной пар, образовавшийся над поверхностью океанов, переносится ветрами на материки, выпадает там в виде атмосферных осадков и возвращается в океан в виде стока. В этом процессе изменяется качество воды: при испарении соленая морская вода превращается в пресную, а загрязненная - очищается.

Малый, или океанический, круговорот - водяной пар, образовавшийся над поверхностью океана, сконденсируется и выпадает в виде осадков снова в океан.

Внутриконтинентальный круговорот - вода, которая испарилась над поверхностью суши, опять выпадают на сушу в виде атмосферных осадков.

В конце концов, осадки в процессе движения опять достигают Мирового океана.

Скорость переноса различных видов воды изменяется в широких пределах, так и периоды расходов, и периоды обновления воды также разные. Они изменяются от нескольких часов до нескольких десятков тысячелетий. Атмосферная влага, которая образуется при испарении воды из океанов, морей и суши и существует в виде облаков, обновляется в среднем через восемь дней.

Воды, входящих в состав живых организмов, восстанавливаются в течение нескольких часов. Это наиболее активная форма водообмена. Период обновления запасов воды в горных ледниках составляет около 1 600 лет, в ледниках полярных стран значительно больше - около 9 700 лет.

Полное обновление вод Мирового океана происходит примерно через 2 700 лет.


Эффекты взаимодействия солнечного излучения, движущейся и вращающейся земли.

В данном вопросе следует рассмотреть сезонную переменчивость: зима/лето. Расписать, что из-за вращения и движения Земли, солнечное излучение поступает неравномерно, а значит, климатические условия меняются с широтой.

Земля наклонена к плоскости эклиптики 23,5 градуса.

Лучи проходят под разными углами. Радиационный баланс. Важно не только, сколько получает,но и сколько теряет, и сколько остается с учетом альбедо.


Центры действия атмосферы

Крупные области устойчивого высокого или низкого давления, связанные с общей циркуляцией атмосферы – центры действия атмосферы . Они определяют господствующее направление ветров и служат очагами формирования географических типов воздушных масс. На синоптических картах они выражаются замкнутыми линиями – изобарами.

Причины : 1) неоднородность Земли;

2) различие физ. свойств суши и воды (теплоемкость)

3) различие в альбедо поверхностей (R/Q): вода – 6%, экв. леса – 10-12%, шир.леса – 18%, луг – 22-23%, снег – 92%;

4) F Кориолиса

Это вызывает ОЦА.

Центры действия атмосферы :

перманентные – в них высокое или низкое давление существует круглый год:

1. экваториальная полоса пониж. давления, ось которой несколько мигрирует от экватора вслед за Солнцем в сторону летнего полушария - Экваториальная депрессия (причины: большое количество Q и океаны);

2. по одной субтропической полосе повыш. давления в Сев. и Юж. полушарии; несколько мигрируют летом в более высокие субтропич. широты, зимой - в более низкие; распадаются на ряд океанич. антициклонов: в Сев. полушарии - Азорский антициклон (особенно летом) н Гавайский; в Юж.- Южно-Индийский, Южно-Тихоокеанский и Южно-Атлантический;

3. области пониж. давления над океанами в высоких широтах умеренных поясов: в Сев. полушарии - Исландский (особенно зимой) и Алеутский минимумы, в Юж.- сплошное кольцо пониженного давления, окружающее Антарктиду (50 0 ю.ш.);

4. области повыш. давления над Арктикой (особенно зимой) и Антарктидой – антициклоны;

сезонные – прослеживаются как области высокого или низкого давления на протяжении одного сезона, сменяясь в другой сезон на центр действий атмосферы противоположного знака. Их существование связано с резким изменением в течение года темп-ры поверхности суши по отношению к темп-ре поверхности океанов; летний перегрев суши создаёт благоприятные условия для формирования здесь областей пониж. давления, зимнее переохлаждение - для областей повыш. давления. В Сев. полушарии к зимним областям повыш. давления относятся Азиатский (Сибирский) с центром в Монголии и Канадский максимумы, в Юж.- Австралийский, Южно-Американский и Южно-Африканский максимумы. Летние области пониж. давления: в Сев. полушарии - Южно-Азиатский (или Переднеазиатский) и Северо-Американский минимумы, в Юж. - Австралийский, Южно-Американский и Южно-Африканский минимумы).

Центрам действия атмосферы присущ определенный тип погоды. Поэтому воздух здесь сравнительно быстро приобретает свойства подстилающей поверхности – жаркий и влажный в Экваториальной депрессии, холодный и сухой в Монгольском антициклоне, прохладный и влажный в Исландском минимуме и т.д.


Планетарный теплообмен и его причины

Основные черты планетарного теплообмена . Солнечная энергия, поглощаемая поверхностью земного шара, расходуется затем на испарение и перенос тепла турбулентными потоками. На испарение уходит в среднем по всей планете около 80%, а на турбулентный теплообмен - остальные 20% от общего тепла.

Процессы теплообмена и изменения с географической широтой его составляющих в океане и на суше отличаются большим своеобразием. Все тепло, поглощаемое сушей весной и летом, полностью теряется осенью и зимой; при сбалансированном годовом бюджете тепла он, следовательно, повсеместно оказывается равным нулю.

В Мировом океане благодаря большой теплоемкости воды и ее подвижности в низких широтах происходит накопление тепла, откуда оно переносится течениями в высокие широты, где расходование его превышает поступление. Таким образом покрывается дефицит, создающийся в теплообмене воды с воздухом.

В экваториальной зоне Мирового океана при большой величине поглощаемой солнечной радиации и пониженном расходовании энергии годовой бюджет тепла имеет максимальные положительные значения. С удалением от экватора положительный годовой бюджет тепла уменьшается из-за увеличения расходных составляющих теплообмена, главным образом испарения. С переходом от тропиков к умеренным широтам бюджет тепла становится отрицательным.

В пределах суши все тепло, получаемое в весенне-летнее время, расходуется в осенне-зимний период. В водах же Мирового океана за долгую историю Земли накопилось огромное количество тепла равное 7,6 * 10^21 ккал. Аккумуляция столь большой массы объясняется высокой теплоемкостью воды и ее интенсивным перемешиванием, в процессе которого происходит довольно сложное перераспределение тепла в толще океаносферы. Теплоемкость всей атмосферы в 4 раза меньше, чем у десятиметрового слоя вод Мирового океана.

Несмотря на то что удельный вес солнечной энергии, идущей на турбулентный теплообмен между поверхностью Земли и воздухом, сравнительно невелик, он является основным источником нагревания приповерхностной части атмосферы. Интенсивность этого теплообмена зависит от разности температур между воздухом и подстилающей поверхностью (водой или сушей). В низких широтах планеты (от экватора примерно до сороковых широт обоих полушарий) воздух нагревается главным образом от суши, неспособной аккумулировать солнечную энергию и отдающей все получаемое тепло атмосфере. За счет турбулентного теплообмена воздушная оболочка получает от 20 до 40 ккал/см^2 в год, а в областях с малым увлажнением (Сахара, Аравия и др.) - даже более 60 ккал/см^2. Воды же в этих широтах накапливают тепло, отдавая воздуху в процессе турбулентного теплообмена лишь 5-10 ккал/см^2 в год и менее. Только в отдельных районах (ограниченной площади) вода в среднем за год оказывается холоднее и потому получает тепло от воздуха (в экваториальной зоне, на северо-западе Индийского океана, а также у западного побережья Африки и Южной Америки).