Кора головного мозга, строение и функции. Строение и функции больших полушарий головного мозга

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 квадратных сантиметров, покрывающий большие полушария. Новая кора составляет около 72% всей площади коры и около 40% массы головного мозга. В новой коре имеется 14 млр. Нейронов, а количество глиальных клеток приблизительно в 10 раз больше.

Кора головного мозга в филогенетическом плане является наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

В направлении с поверхности новой коры вглубь различают шесть горизонтальных слоев.

    Молекулярный слой. Имеет очень мало клеток, но большое количество ветвящихся дендриов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

    Наружный зернистый слой. Составлен в основном звездчатыми и частично пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

    Наружный пирамидный слой. Состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток как и зернистые клетки 2-го слоя, образуют кортикокортикальные ассоциативные связи.

    Вгутренний зернистый слой. По характеру клеток (звездчатые клетки) и расположению их волокон аналогичен наружному зернистому слою. В этом слое афферентные волокна имеют синаптические окончания, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

    Внутренний пирамидный слой. Образован средними и крупными пирамидными клетками. Причем, гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют афферентные кортикоспинальные и кортикобульбарный двигательные пути.

    Слой полиморфных клеток. Образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Оценивая в целом афферентные и эфферентные связи новой коры, необходимо отметить, что в слоях 1 и 4 происходят восприятие и обработка поступающих в кору сигналов. Нейроны 2 и 3 слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в 5 и 6 слоях.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. При этом они расположены таким образом, что захватывают все слои коры. Такие объединения нейронов были названы учеными нейронными колонками . Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом.

Возрастание в филогенезе роли коры большого мозга, анализ и регуляция функций организма и подчинение себе нижележащих отделов центральной нервной системы учеными определено как кортикализация функций (объединение).

Наряду с кортикализацией функций новой коры, принято выделять и локализацию ее функций. Наиболее часто используемым подходом к функциональному разделению коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры – зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (центральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные 2 и 4 слои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями (ядерными частями анализаторов, как полагал И.П.Павлов). Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны , полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть постцентральной дольки на медиальной поверхности полушарий (поля 1 – 3), которую обозначают как соматосенсорную область . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-мышечного аппарата от мышечных, суставных, сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, а проекция нижней части голени и стоп – в коре постцентральной дольки на медиальной поверхности полушарий (Рис. 12).

При этом проекция наиболее чувствительных участков (язык, гортань, пальцы рук и т.д.) имеет относительно большие зоны по сравнению с другими частями тела.

Рис. 12. Проекция частей тела человека на область коркового конца анализатора общей чувствительности

(разрез мозга во фронтальной плоскости)

В глубине латеральной борозды располагается слуховая кора (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеется четкая топическая проекция: в разный участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также, как предполагают ученые, центр вестибулярного анализатора в верхней и средней височных извилинах. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мосто-мозжечковый путь).

Еще одна область новой коры расположена в затылочной коре. Это первичная зрительная область . Здесь имеется топическое представительство рецепторов сетчатки. При этом каждой точке сетчатки соответствует свой участок зрительной коры. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры мозга в этой области приводит к возникновению световых ощущений. Около первичной зрительной области располагается вторичная зрительная область . Нейроны этой области полимодальны и отвечают не только на световые, но и на тактильные, а также на слуховые раздражители. Не случайно именно в этой зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознание. Раздражение этой области коры вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающем мире и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей обработки в ассоциативную кору.

Ассоциативные области коры (межсенсорная, межанализаторная), включает участки новой коры большого мозга, которые расположены рядом с сенсорными и двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко, что связано со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. Ассоциативная коры является филогенетически наиболее молодой областью новой коры, получившей наибольшее развитие у приматов и человека. У человека она составляет около 50% всей коры или 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры, отличающей их от нейронов первичных зон, является полисенсорность (полимодальность). Они отвечают с практически одинаковым порогом не на один, а на несколько раздражителей – зрительные, слуховые, кожные и пр. Полисенсорность нейронов ассоциативной коры создается как ее кортикокортикальными связями с разными проекционными зонами, так и главным ее афферентным входом от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющий произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психических функций.

По таламокортикальным проекциям выделяют две ассоциативные системы мозга:

    таламотеменную;

    таломовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет афферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис.

Гнозис – это различные виды узнавания: формы, величины, значения предметов, понимание речи и пр. К гностическим функциям относится оценка пространственных отношений, например взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса (расположен сзади от средних отделов постцентральной извилины). Он обеспечивает способность узнавания предметов на ощупь. Вариантом гностической функции является также и формирование в сознании трехмерной модели тела («схемы тела»).

Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкраевой извилине и обеспечивает хранение и реализацию программы двигательных автоматизированных актов (например, причесывание, рукопожатие и пр.).

Таламолобная система . Представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация данной функции основывается на других функциях таломолобной системы, таких как:

    формирование доминирующей мотивации, обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лобной коры и лимбической системы и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством;

    обеспечение вероятностного прогнозирования, что выражается в изменении поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации;

    самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (согласно теории функциональной системы П.К.Анохина, акцептор результата действия).

В результате проведения по медицинским показаниям префронтальной лоботомии, при которой пересекаются связи между лобной долей и таламусам, наблюдается развитие «эмоциональной тупости», отсутствие мотивации, твердых намерений и планов, основанных на прогнозировании. Такие люди становятся грубыми, нетактичными, у них появляется тенденция к повторению каких-либо двигательных актов, хотя изменившаяся обстановка требует выполнения совсем других действий.

Наряду с таламотеменной и таламолобной системами, некоторые ученые предлагают выделять и таламовисочную систему. Однако концепция таламовисочной системы до настоящего времени не получает подтверждения и достаточной научной проработки. Ученые отмечают определенную роль височной коры. Так, некоторые ассоциативные центры (например, стереогнозиса и праксиса) включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины. Именно данный центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Также необходимо отметить, что психофизиологические функции, осуществляемые ассоциативной корой, инициируют поведение, обязательным компонентом которого являются произвольные и целенаправленные движения, осуществляемые при обязательном участии двигательной коры.

Двигательные области коры . Понятие о двигательной коре больших полушарий начало формироваться с 80-х годов Х1Х в., когда было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны. На основании современных исследований в двигательной коре принято выделять две моторные области: первичную и вторичную.

В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топография проекций мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляется с минимальным порогом, что говорит о ее высокой возбудимости. Они (эти двигательные реакции) представлены элементарными сокращениями противоположной стороны тела. При поражении этой корковой области утрачивается способность к тонким координированным движениям конечностей, особенно пальцев рук.

Вторичная двигательная кора . Расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Премоторная кора получает основную часть эфферентной импульсации базальных ганглиев и мозжечка и участвует в перекодировании информации о плане сложных движений. Раздражение данной области коры вызывает сложные координированные движения (например, поворот головы, глаз и туловища в противоположные стороны). В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: в заднем отделе средней лобной извилины располагается центр письменной речи, в заднем отделе нижней лобной извилины располагается центр моторной речи (центр Брока), а также музыкальный моторный центр, определяющий тональность речи и способность петь.

Моторную кору часто называют агранулярной корой, поскольку в ней плохо выражены зернистые слои, но более ярко выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры. Такие рядом лежащие нейронные комплексы, выполняющие сходные функции, называют функциональными двигательными колонками . Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены, как правило, в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, начинающиеся от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток коры прецентральной извилины, премоторной коры и постцентральной извилины.

Пирамидный путь состоит из 1 млн волокон кортикоспинальньного пути, начинающихся от коры верхней и средней трети перцентральной извилины, и 20 млн волокон кортикобульбарного пути, начинающегося от коры нижней трети прецентральной извилины. Через двигательную кору и пирамидные пути осуществляются произвольные простые и сложные целенаправленные двигательные программы (например, профессиональные навыки, формирование которых начинается в базальных ганглиях и заканчивается во вторичной моторной коре). Большинство волокон пирамидных путей осуществляет перекрест. Но небольшая их часть остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора (двигательные навыки письма, поворот головы и глаз в противоположную сторону и пр.).

К корковым экстрапирамидным путям относятся кортикобульбарные и кортикоретикулярные пути, начинающиеся приблизительно в той же области, что и пирамидные пути. Волокна кортикобульбарного пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, обеспечивающих точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Данная система осуществляет регуляцию тонуса, позы, координацию и коррекцию движений.

Оценивая в общем роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лобной системе, замысел движения – в ассоциативной коре больших полушарий, программа движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения Межполушарные взаимоотношения проявляются у человека в двух главных формах:

    функциональной асимметрии больших полушарий:

    совместной деятельности больших полушарий.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Исследование функциональной асиммертии полушарий началось в середине Х1Х в., когда французские медики М.Дакс и П.Брока показали, что нарушение речи человека возникает при поражении коры нижней лобной извилины, как правило левого полушария. Некоторое время спустя немецкий психиатр К.Вернике обнаружил в коре заднего отдела верхней височной извилины левого полушария слуховой центр речи, поражение которого приводит к нарушению понимания устной речи. Эти данные и наличие моторной асимметрии (праворукости) способствовало формированию концепции, согласно которой для человека характерно левополушарное доминирование, образовавшееся эволюционно в результате трудовой деятельности и являющееся специфическим свойством его мозга. В ХХ столетии в результате применения различных клинических методик (особенно при исследовании больных с расщепленным мозгом – осуществлялась перерезка мозолистого тела), было показано, что по ряду психофизиологических функций у человека доминирует не левое, а правое полушарие. Таким образом возникла концепция частичного доминирования полушарий (ее автором является Р.Сперри).

Принято выделять психическую , сенсорную и моторную межполушарную асимметрии мозга. Опять же, при исследовании речи было показано, что словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны преимущественно с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упражнений, то есть упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно статически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предметов. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предметов и временные отношения. В эмоциональной сфере правое полушарие обусловливает преимущественно более древние, отрицательные эмоции, контролирует проявление сильных эмоций. В целом правое полушарие «эмоционально». Левое полушарие обусловливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которые трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции, создаются предпосылки логического мышления.

Моторная асимметрия связана с тем, что мышцы полушарий, обеспечивая новый, более высокий уровень регуляции сложных функций мозга, одновременно повышает требования к совмещению деятельности двух полушарий.

Совместная деятельность больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга.

Клинические исследования показали, что помимо поперечных комиссуральных волокон, обеспечивающих взаимосвязь полушарий мозга, также и продольных, а также вертикальных комиссуральных волокон.пе

Вопросы для самоконтроля:

    Общая характеристика новой коры.

    Функции новой коры.

    Строение новой коры.

    Что такое нейронные колонки?

    Какие области коры выделяются учеными?

    Характеристика сенсорной коры.

    Что такое первичные сенсорные области? Их характеристика.

    Что такое вторичные сенсорные зоны? Их функциональное назначение.

    Что такое соматосенсорная область коры и где она располагается?

    Характеристика слуховой области коры.

    Первичная и вторичные зрительные области. Их общая характеристика.

    Характеристика ассоциативной области коры.

    Характеристика ассоциативных систем мозга.

    Что собой представляет таламотеменная система. Ее функции.

    Что собой представляет таламолобная система. Ее функции.

    Общая характеристика двигательной коры.

    Первичная моторная кора; ее характеристика.

    Вторичная моторная кора; ее характеристика.

    Что такое функциональные двигательные колонки.

    Характеристика корковых пирамидных и экстрапирамидных путей.

Как устроен наш мозг? Сколько нейронов в нем и каковы функции неокортекса? Современные ученые скрупулезно исследуют особенности нашего мозга и открывают все больше интересных подробностей.

Благодаря развитию высших нервных центров человек определяет себя и свое место в социуме, сознательно контролирует свое поведение и способен к адаптации в новой среде. Все эти преимущества связаны с функциями больших полушарий, которые мы рассмотрим.

Особенности мозга человека

Мозг человеческого вида весит приблизительно 1 кг 200 грамм - это средние показатели. Он состоит из 5 основных частей: это конечный, промежуточный, средний, задний и продолговатый мозг.

Большие борозды (углубления) разделяют 4 основные части лобную долю от теменной; а теменную - от затылочной; примыкает к трем другим. Последняя, пятая доля - островковая, которая находится в глубине латеральной ямки. Гармоничное взаимодействие всех нейронов обеспечивает рост и развитие нашей индивидуальности, наш характер и способности.

Можно выделить отдельную функцию больших полушарий - непрекращающееся развитие. Мозг человека все время развивается. Все, что индивидуум читает, видит, воспринимает, он буквально впитывает в себя. Особенно важна новая информация для детей до 2 лет, в это время их нейроны активно выстраивают связи на будущее.

Большие полушария. Строение и функции

В коре имеется от 14 до 17 млрд нейронов; а связей между клетками во много раз больше. Нейроны соединены синапсами. А помогают активировать связи различные нейромедиаторы - химические вещества, которые активируют рядом находящийся синапс.

Полушария мозга имеют особую структуру. Благодаря складкам, состоящим из борозд и извилин, площадь коры значительно увеличивается. По некоторым данным, общая площадь коры у среднестатистического человека - 2200 кв. см.

Под корой находится подкорка, или белое вещество мозга. Полушария между собой соединены мозолистым телом. А еще глубже находятся желудочки мозга - заполненные спинномозговой жидкостью пространства.

Кора состоит из слоев нервных нервных клеток, которые чередуются со слоями их ответвлений - аксонов. Всего насчитывается 6 слоев:

  • молекулярный слой;
  • наружный зернистый;
  • наружный пирамидный - содержит преимущественно пирамидные нейроны;
  • внутренний зернистый;
  • внутренний пирамидный;
  • слой веретеновидных нейронов.

Веретеновидные нейроны постепенно переходят в мозга. В коре происходят сознательные действия, формируется речь. В нижних глубинных частях под корой расположены центры бессознательных рефлексов и контроль внутренних органов и систем органов.

Зоны мозга

Чтобы понять функции больших полушарий головного мозга, нужно сначала разобрать их структуру. Полушария разделены условно на несколько центров, в которых проходят определенные психические и физиологические процессы. Эти центры не являются какими-то отдельными структурами. Все нейроны всех сетей постоянно взаимодействуют друг с другом. Это подтверждают многие исследователи.

Но все-таки можно выделить некоторые области в сером веществе мозга, которые более специализируются на отдельных задачах.

Зоны мозга нейрофизиологи выделяют следующие:

  • Затылочная зона.
  • Височная - отвечает за обоняние и вкус. Два эти чувства сильно взаимосвязаны.
  • Зрительная зона. Тут расшифровываются сигналы, поступающие от глаз.
  • Теменная - это так называемая зона кожно-мышечной чувствительности.
  • Лобная доля - это сознательное поведение человека, его установки и трудовая деятельность. Задняя часть лобной доли - двигательный центр.

Функции больших полушарий мозга, как видим, распределены по зонам. Некоторые области имеют несколько функций. Например, руки связаны в больших полушариях с двумя зонами - двигательной и чувствительной.

И если при черепно-мозговой травме будет повреждена какая-либо из указанных областей, то функция этой зоны пострадает или совершенно пропадет. Восстановить утраченную функцию можно в том случае, если другая часть мозга - та, где находились нейроны, связанные с поврежденными тканями, сможет взять на себя всю работу утраченного центра.

Функции коры

Итак, каковы функции коры больших полушарий? Кора мозга отвечает за условные рефлексы, сформированные в процессе накопления опыта. Также в коре проходят все высшие психические процессы. Здесь сосредоточены зоны памяти, речи, мышления. Это более поздняя биологическая структура по сравнению с древним центральным мозгом, и она плохо изучена. Но известно, что наша личность и особенности характера, способность к усвоению и анализированию информации заложены именно в коре.

Большую роль играют в формировании навыков и привычек ассоциативные области. Можно сказать, утрируя информацию, что самая основная функция коры коры больших полушарий именно ассоциативная. Ведь на основе этих механизмов формируется и личность.

Ассоциативных областей 3:

  • теменно-затылочно-височная;
  • префронтальная ассоциативная;
  • лимбическая.

Совместная работа этих центров обеспечивает всесторонний анализ поступающей извне информации. Без этих высших центров человек не смог бы целенаправленно выполнять работу.

Двигательная активность

Важнейшая функция больших полушарий - физическая активность. В передних отделах предцентральной извилины находится центр, где локализованы области проекции ступней и голеней. В средней части этой извилины находятся клетки, работающие с сигналами верхних конечностей, а самая глубокая часть предцентральной извилины отвечает за работу мышц лица.

Слаженная работа рецепторов проводящих нервных путей и этих мозговых центров обеспечивает нам ходьбу, работу руками и другую двигательную активность. Причем это все контролируется автоматически. Спортсмен ведь уже не думает, как согнуть ногу во время бега. Достаточно только дать сигнал старта сознательно.

Память и речь

В формировании памяти играют роль медиальная височная зона и гиппокамп. Однако они не являются тем местом, где накопленная информация хранится. Это скорее служебные зоны. Считается, что человек запоминает все, что видел или слышал когда-то. Основная проблема заключается в способности воспроизведения информации и ее перекодирования в слова.

Область речи - это граница височной и теменной зон. Причем у человека различают 2 зоны: отвечающий за речевое восприятие центр Вернике и за само произношение центр Брока.

Как лучше запомнить информацию?

Одна из функций больших полушарий, как мы теперь понимаем, - это запоминание и воспроизведение закодированной информации в словах. Если держать в мыслях и постоянно повторять одни и те же слова, то информация останется только в зоне речи и через несколько дней исчезнет.

Чтобы более глубоко запомнить информацию, необходимо применять образное мышление, ассоциируя каждое абстрактное понятие с яркими объектами.

В глубинной памяти у нас сохраняются только те аспекты реальности, которые связаны с яркими впечатлениями и сильными продолжительными эмоциями. А эмоции у нас "базируются" глубоко в белом веществе - в миндалевидном теле. Функции больших полушарий связаны с чисто сознательными намерениями запомнить.

Стрессы и депрессии ухудшают способность мозга запоминать что-либо. Начинать учить материал в беспокойном или раздражительном состоянии попросту бесполезно.

Вывод

Что можно сказать о функциях больших полушарий? Все центры мозга тесно взаимосвязаны. Говоря о конкретных областях, ученые подразумевают скопление нейронов, которые больше других взаимосвязанных сетей участвуют в том или ином психическом процессе.

Формирование памяти, способность говорить и думать словами - это самый сложный психический процесс. На это уходит большое количество энергии, и речью занято множество нервных клеток.

Кора больших полушарий связана непосредственно с сознательными процессами, а подкорка - с бессознательными, глубинными частями личности, которое Фрейд называл "Оно".

ФУНКЦИИ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

В функциональном отношении кора больших полушарий делиться на три области: сенсорную, двигательную (моторную) и ассоциативную кору. Сенсорная область включает те области коры больших полушарий, в которых проецируются сенсорные раздражители. Сенсорная кора располагается преимущественно в теменной, височной и затылочной долях большого мозга. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Зоны сенсорной коры включают первичные и вторичные области коры. В первичных областяхкорыформируются ощущения одного качества. Во вторичных областях коры формируются ощущения, возникающее в ответ на действие нескольких раздражителей.

Основные сенсорная области коры находиться в:

Постцентральной извилине: кожной чувствительности от тактильных, болевых температурных рецепторов; чувствительность опорно-двигательного аппарата – мышц, суставов, сухожилий; тактильная и вкусовая чувствительность языка.

- средняя височная извилина (и. Гешля), здесь формируются звуковые ощущения,–

Верхняя и средняя височная извилина, здесь локализуется центр вестибулярного анализатора, формируются ощущения «схемы тела»

- областьклиновидной извилины – первичная зрительная область, расположенная в затылочной коре.

Ассоциативная область коры включает участки, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко. В ассоциативной коре можно выделить зоны:

Таламолобная система;

Таламотеменная система;

Таламовисочная система.

Таламолобная система участвует в формировании доминирующей мотивации:эта функция обусловлена двусторонней связью между лобной корой и лимбической системой, обеспечивает вероятности прогнозирования и самоконтроля действий путем постоянного сравнения результат действия с исходными намерениями.

Таламотеменная система выполняет функции гнозиса, формирование «схемы тела» - стереогнизис, и праксиса. Гнозис – это функция различных видов узнавания: формы, величины, значения предметов, понимания речи, познание процессов и закономерностей. Стереогнизис функция обеспечивающая способность узнавания предметов на ощупь. В центре стереогнизиса формируются ощущения, отвечающие за создание трехмерной модели тела – «схема тела». Праксис – это функция, направленная на выполнение какой-либо деятельности, ее центр располагается в надкраевой извилине, обеспечивает хранение и реализацию программы двигательных актов (рукопожатие, причесывание и т.д.).

Таламовисочная системанаходится в верхней извилине височной коры, здесь расположен слуховой центр речи Вернике. Он обеспечивает речевой гнозис – распознавание и хранение устной речи. В средней части верхней височной извилины находится центр распознания музыкальных звуков. В границах височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Двигательная кора занимает области лобной доли коры больших полушарий. В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентарльной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Эта кора получает основную часть эфферентной импульсации от базальных ядер и мозжечка и участвует в перекодировке информации программ сложных движений. В премоторной коре расположены центры, связанные с социальными функциями человека:

В заднем отделе средней лобной извилины - центр письменной речи,

В заднем отделе нижней лобной извилины центр моторной речи Брока, обеспечивающие речевой праксис, а также музыкальный моторный центр, определяющий тональность речи.

Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основные эфферентные выходы двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки коры. Пирамидные нейроны двигательной коры возбуждают или тормозят мотонейроны стволовых и спинальных центров.

Одним из основных принципов функционирования коры больших полушарий головного мозга является принцип межполушарной асимметрии. Межполушарная асимметрия обусловлена асимметричной локализацией нервного аппарата второй сигнальной системы и доминированием правой руки, как средства адаптивного поведения. По данным современной нейрофизиологии (В.Л. Бианки), левое полушарие большого мозга у человека специализируется на выполнение вербальных символических функций, а правое полушарие на реализации пространственных образных функций. Результатом такого функционального разделения является асимметрия психической деятельности, которая проявляется различиями типах мыслительных операций. Доминирование левого полушария обусловливает мыслительный тип, а правого полушария художественный тип мышления.

ПРАКТИЧЕСКАЯ РАБОТА

Для определения коэффициента функциональной асимметрии используются бланки, представляющие собой листы бумаги (А4), на которых расположены 8 равных прямоугольников по 4 в ряд. Каждый прямоугольник заполняется последовательно слева направо с №1 по №4 и в обратном направлении с №5 по №8. Форма бланка представлена на рисунке 1.

Рисунок 1 – Бланк задания

Инструкция: «По моему сигналу вы должны начать проставлять точки в каждом прямоугольнике бланка. За отведенное для каждого прямоугольника время (5 с) вы должны поставить в нем как можно больше точек. Переходить из одного прямоугольника в другой нужно по команде, не прерывая работы. Все время работаете в максимальном для себя темпе. Теперь возьмите в правую (или левую руку) карандаш и поставьте его перед первым прямоугольником бланка».

По секундомеру экспериментатор подает сигнал: «Начали!», затем через каждые 5 секунд дает команду: «Следующий!». По истечении 5 секунды работы в прямоугольнике №8 экспериментатор подает команду: «Стоп». Подсчитайте количество точек в каждом квадрате и заполните таблицу 1 в рабочей тетради.

Таблица 1 – Протокол исследования



Используя результаты таблицы 1, составьте график зависимости между временем выполнения этапа задания (ось Х) и количеством точек для каждой руки (ось Y). Сделайте вывод, руководствуясь следующей закономерностью: у правшей – работоспособность правой руки выше работоспособности левшей, а у левшей – наоборот.

Рассчитайте коэффициент функциональной асимметрии по работоспособности левой и правой руки, получив суммарные значения работоспособности рук путем сложения всех данных по каждому из восьми прямоугольников. Для расчета используйте формулу для оценки коэффициента функциональной асимметрии (1):

KF A = [(SR - SL) / (SR + SL)] (1)

где KF A – коэффициент функциональной асимметрии, д.е.;

SR – общая сумма точек, поставленных правой рукой, шт;

SL – общая сумма точек, поставленных правой левой, шт.

Знак коэффициента функциональной асимметрии интерпретируется следующим образом: если величина коэффициент принимает положительное значение «+», это свидетельствует о смещении баланса в сторону активности левого полушария; если полученный коэффициент принимает отрицательное значение, знак «–», это указывает на активность правого полушария.

Проанализируйте получившийся результат и сделайте вывод.


Синонимы: проекционная кора или корковый отдел анализаторов

Третичная кора

На одном графике две кривые – для правой (синий) и левой руки (красный);

Кора больших полушарий головного мозга представляет собой наиболее молодое образование ЦНС. В филогенезе объем новой коры (плаща) увеличивается. Так, новая кора по отношению ко всей коре у ежа составляет 32,4%, у кролика - 56, у собаки - 84,2, а у человека - 95,9%.

Кора больших полушарий состоит из трех зон: древней, старой и новой. В древнюю кору входят обонятельная доля, боковая обонятельная извилина. Старая кора состоит из гиппокамповой и зубчатой извилин. Новая кора представляет собой зону проекции внешней рецепции на поле воспринимаемых нейронов коры. У человека поверхность новой коры составляет 1500 см 3 . Быстрое развитие проекционных полей, ассоциативных областей коры, и медленное развитие костей черепа привело к образованию складок: борозд и извилин.

Кора состоит из 14 млрд клеток, расположенных в шести слоях (рис. 3.11).

  • 1. Молекулярный слой коры головного мозга - образован волокнами, сплетенными между собой, содержит мало клеток.
  • 2. Наружный зернистый слой коры головного мозга - характеризуется густым расположением мелких нейронов самой различной формы.
  • 3. Наружный пирамидный слой коры головного мозга - состоит в основном из пирамидных нейронов разной величины, более крупные клетки лежат более глубоко.
  • 4. Внутренний зернистый слой коры головного мозга - характеризуется рыхлым расположением мелких нейронов различной величины, мимо которых проходят плотные пучки волокон перпендикулярно к поверхности коры.
  • 5. Внутренний пирамидный слой коры головного мозга - состоит в основном из средних и больших пирамидных нейронов, апикальные дендриты которых простираются до молекулярного слоя.
  • 6. Слой веретеновидных клеток коры головного мозга - в нем расположены веретеновидные нейроны, глубинная часть этого слоя переходит в белое вещество головного мозга. Слои 2, 4 и 6 состоят из воспринимающих клеток. Слои 3 и 5 - пирамидные, дающие начало нисходящим двигательным путям. Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои.

Как показал киевский анатом В.А. Бец, не только вид нервных клеток, но и их взаиморасположение неодинаково в различных участках коры. Распределение нервных клеток в коре обозначается термином «цитоархитектоника». Исследования, проведенные учеными разных стран в конце XIX и начале XX столетия, позволили

Рис. 3.11.

С.Г. Кривощеков, 2012)

создать цитоархитектонические карты коры большого мозга человека и животных, в основу которых были положены особенности строения коры в каждом участке полушария. К. Бродман выделил в коре 52 цитоархитектонических поля, Ф. Фогт и О. Фогт с учетом волоконного строения описали в коре большого мозга 150 миелоар- хитектонических участков.

Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида этих путей:

  • 1) проекционный путь. Он связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • 2) комиссуральный путь. Его волокна входят в состав мозговых комиссур, которые соединяют соответствующие части правого и левого полушарий. Входят в состав мозолистого тела;
  • 3) ассоциативные пути связывают участки коры одного и того же полушария.

В коре больших полушарий располагаются высшие регуляторные центры, обеспечивающие контроль и регуляцию всех рефлекторных процессов организма, психическую деятельность, поведение, восприятие всех видов чувствительности.

Электрическая активность коры больших полушарий. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрацию электроэнцефалограммы (ЭЭГ), т.е. электрической активности коры, можно производить через неповрежденные покровы головы (в естественных условиях на животных и человеке) и регистрировать суммарную активность всех ближайших к поверхности нейронов. Современные элекгроэнцефалографы усиливают эти потенциалы в 2-3 млн раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ, и амплитуды волн (рис. 3.12). В состоянии относительного покоя чаще всего регистрируется альфа-ритм, в состоянии активного внимания - бета-ритм, при засыпании, некоторых эмоциональных состояниях - тэта-ритм, при глубоком сне, потере сознания, наркозе - дельта-ритм.

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ - быстрой асинхронной активности.

В процессе обучения и овладения разными двигательными навыками происходит перестройка и совершенствование функций коры больших полушарий: увеличиваются амплитуда и регулярность проявления фоновой активности - альфа-ритма в состоянии покоя, значительно усиливается по сравнению с состоянием относительного покоя взаимосвязанность (синхронность и синфазность) электриче-

Рис. 3.12. Биопотенциалы коры больших полушарий на ЭЭГ (Дж. Хэссет, 1981) ской активности различных областей коры. Это облегчает функциональные взаимодействия между различными корковыми центрами. Между этими зонами устанавливается общий ритм активности. В такие характерные системы взаимодействующих корковых зон включаются не только первичные поля (моторные, зрительные и др.), но и вторичные (например, премоторные и др.) и особенно третичные поля: передние - программирующие лобные области и задние - зоны афферентного синтеза (нижнетеменные и др.).

  • 16. Строение и работа сердца.
  • 20. Анатомия и физиология легких. Механизм газообмена, его нарушения.
  • 21. Понятие о пищеварении. Строение и функции органов пищеварения.
  • 22.Печень, ее строение и функции.
  • 27.Система органов выделения, ее значение, строение и функции
  • 29.Физиологические свойства нервной ткани. Понятие о возбудимости, проводимости и лабильности.
  • 30. Основные процессы в центральной нервной системе, их координация и возрастные особенности.
  • 32. Явление доминанты, ее значение в процессе обучения
  • 33. Рефлекторный принцип деятельности нервной системы. Понятие о рефлексе, рефлекторной дуге, рефлекторном кольце.
  • 36. Динамический стереотип, его роль в процессе обучения
  • 37.Торможение условных рефлексов, его виды и возрастные особенности.
  • 38. Внешнее торможение, его значение и виды.
  • 39. Виды внутреннего торможения, их роль в процессе обучения.
  • 40.Процессы возбуждения и торможения в центральной нервной системе, их взаимодействие.
  • 41.Общее понятие об анализаторах (сенсорных системах), их виды, анатомическое и физиологические особенности.
  • 42.Зрительный анализатор, его строение и функции. Профилактика нарушений зрения.
  • 43.Слуховой анализатор, его строение и функции. Профилактика нарушений слуха
  • 44. Большие полушария головного мозга, их строение, роль, функциональна асимметрия.
  • 45. Кора больших полушарий, ее строение и значение.
  • 46. Гипоталамо-гипофизарно-надпочечниковая система, ее роль.
  • 1.Гигиенические требования к условиям обучения школьников (роль внешнесредовых факторов класса)
  • 2.Оптимальные размеры классной комнаты, их обоснование.
  • 3.Микроклимат класса, его параметры, методы их определения.
  • 4.Освещение рабочего места, его виды. Гигиенические требования к любому виду освещения.
  • 5.Гигиенические требования к школьной мебели. Параметры парт.
  • 6.Физиолого-гигиенические требования к организации учебного процесса.
  • 7.Гигиеническая оценка школьного режима и расписания уроков в классе.
  • 8.Максимально допустимая недельная учебная нагрузка школьников в зависимости от возраста.
  • 9.Динамика работоспособности учащихся в течение урока, учебного дня, учебной недели, учебного года.
  • 10.Факторы, влияющие на работоспособность школьников.
  • 11.Роль организации активного отдыха учащихся на переменах.
  • 20. Калорийность пищевого рациона, ее расчет.
  • Формула расчета калорий: основной обмен
  • Суточная норма калорий для женщины: пример расчета оо
  • Суточная норма калорий для мужчины: пример расчета оо
  • 45. Кора больших полушарий, ее строение и значение.

    Кора больших полушарий головного мозга - структура головного мозга, слой серого вещества толщиной 1,3-4,5 мм, расположенный по периферии полушарий большого мозга, и покрывающий их.

    Кора головного мозга играет очень важную роль в осуществлении высшей нервной (психической) деятельности.

    У человека кора составляет в среднем 44% от объёма всего полушария в целом.

    Кора большого мозга покрывает поверхность полушарий и образует большое количество различных по глубине и протяжённости борозд. Между бороздами расположены различной величины извилины большого мозга.

    В каждом полушарии различают следующие поверхности:

    выпуклую верхнелатеральную поверхность , примыкающую к внутренней поверхности костей свода черепа

    нижнюю поверхность , передние и средние отделы которой располагаются на внутренней поверхности основания черепа, в области передней и средней черепных ямок, а задние - на намёте мозжечка

    медиальную поверхность , направленную к продольной щели мозга.

    В каждом полушарии различают наиболее выступающие места: спереди - лобный полюс, сзади - затылочный, и сбоку - височный.

    Полушарие разделено на пять долей. Четыре из них примыкают к соответствующим костям свода черепа:

    Лобная, теменная, затылочная, височная, островковая доля отделяет лобную долю от височной.

    Устройство коры головного мозга и взаимодействие между собой отдельных её частей называется архитектоникой коры большого мозга. Место, где кора мозга выполняет те или иные функции: анализ поступающей от органов чувств информации, их сохранение, и т.д., во многом определяются внутренней структурой и построением связей (морфологией) внутри конкретных участков головного мозга (такие участки называются корковыми полями). Ещё одной важнейшей функцией коры головного мозга является связь с определенными внешними приемниками информации (рецепторами), каковыми являются все органы чувств, а также с органами и тканями, выполняющими команды, поступающие от коры головного мозга (эффекторами).

    Всё, что человек видит, распознаётся и анализируется в затылочной области коры головного мозга, глаз же - всего лишь приемник изображения, передающий его по нервным волокнам для анализа в затылочную зрительную зону.

    В том случае, если изображение движется, то анализ движения этого изображения происходит в теменной области , и в результате этого анализа мы определяем, в каком направлении и с какой скоростью движется видимый нами предмет.

    Теменные области коры, совместно с височными зонами коры принимают участие в формировании акта членораздельной речи и в восприятии формы тела человека и его расположения в пространстве.

    Лобные доли коры головного мозга у человека являются теми участками коры, которые в основном осуществляют высшие психические функции, проявляющиеся в формировании личностных качеств, темперамента, характера, способностей, воли, разумности поведения, творческих наклонностей и одарённости, влечений и пристрастий, в общем всего того, что делает человека личностью, не похожей на всех остальных людей, и в построении целенаправленного поведения, основанного на предвидении. Все эти способности резко нарушается при повреждении лобных отделов коры головного мозга.

    Наиболее обширное поражение коры головного мозга сопровождается полным исчезновением психической деятельности.