Количество теплоты по объему. Количество теплоты: понятие, расчеты, применение

>>Физика: Количество теплоты

Изменить внутреннюю энергию газа в цилиндре можно, не только совершая работу, но и нагревая газ.
Если закрепить поршень (рис.13.5 ), то объем газа при нагревании не меняется и работа не совершается. Но температура газа, а следовательно, и его внутренняя энергия возрастают.

Процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом или теплопередачей.
Количественную меру изменения внутренней энергии при теплообмене называют количеством теплоты . Количеством теплоты называют также энергию, которую тело отдает в процессе теплообмена.
Молекулярная картина теплообмена
При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии горячего тела передается холодному телу.
Количество теплоты и теплоемкость. Вам уже известно, что для нагревания тела массой m от температуры t 1 до температуры t 2 необходимо передать ему количество теплоты:

При остывании тела его конечная температура t 2 оказывается меньше начальной температуры t 1 и количество теплоты, отдаваемое телом, отрицательно.
Коэффициент c в формуле (13.5) называют удельной теплоемкостью вещества. Удельная теплоемкость - это величина, численно равная количеству теплоты, которое получает или отдает вещество массой 1 кг при изменении его температуры на 1 К.
Удельная теплоемкость зависит не только от свойств вещества, но и от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1°С при постоянном давлении ему нужно передать большее количество теплоты, чем для нагревания его при постоянном объеме, когда газ будет только нагреваться.
Жидкие и твердые тела расширяются при нагревании незначительно. Их удельные теплоемкости при постоянном объеме и постоянном давлении мало различаются.
Удельная теплота парообразования. Для превращения жидкости в пар в процессе кипения необходима передача ей определенного количества теплоты. Температура жидкости при кипении не меняется. Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением потенциальной энергии их взаимодействия. Ведь среднее расстояние между молекулами газа много больше, чем между молекулами жидкости.
Величину, численно равную количеству теплоты, необходимому для превращения при постоянной температуре жидкости массой 1 кг в пар, называют удельной теплотой парообразования . Эту величину обозначают буквой r и выражают в джоулях на килограмм (Дж/кг).
Очень велика удельная теплота парообразования воды: r H2O =2,256 10 6 Дж/кг при температуре 100°С. У других жидкостей, например у спирта , эфира, ртути, керосина, удельная теплота парообразования меньше в 3-10 раз, чем у воды.
Для превращения жидкости массой m в пар требуется количество теплоты, равное:

При конденсации пара происходит выделение такого же количества теплоты:

Удельная теплота плавления. При плавлении кристаллического тела вся подводимая к нему теплота идет на увеличение потенциальной энергии молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.
Величину, численно равную количеству теплоты, необходимому для превращения кристаллического вещества массой 1 кг при температуре плавления в жидкость, называют удельной теплотой плавления .
При кристаллизации вещества массой 1 кг выделяется точно такое же количество теплоты, какое поглощается при плавлении.
Удельная теплота плавления льда довольно велика: 3,34 10 5 Дж/кг. «Если бы лед не обладал большой теплотой плавления, - писал Р. Б л эк еще в XVIII в., - то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота непрерывно передается льду из воздуха. Последствия этого были бы ужасны; ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда или снега».
Для того чтобы расплавить кристаллическое тело массой m , необходимо количество теплоты, равное:

Количество теплоты, выделяемое при кристаллизации тела, равно:

Внутренняя энергия тела меняется при нагревании и охлаждении, при парообразовании и конденсации, при плавлении и кристаллизации. Во всех случаях телу передается или от него отнимается некоторое количество теплоты.

???
1. Что называют количеством теплоты ?
2. От чего зависит удельная теплоемкость вещества?
3. Что называют удельной теплотой парообразования?
4. Что называют удельной теплотой плавления?
5. В каких случаях количество теплоты положительная величина, а в каких случаях отрицательная?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

ТЕПЛООБМЕН.

1.Теплообмен.

Теплообмен или теплопередача – это процесс передачи внутренней энергии одного тела другому без совершения работы.

Существуют три вида теплообмена.

1) Теплопроводность – это теплообмен между телами при их непосредственном контакте.

2) Конвекция – это теплообмен, при котором перенос тепла осуществляется потоками газа или жидкости.

3) Излучение – это теплообмен посредством электромагнитного излучения.

2.Количество теплоты.

Количество теплоты – это мера изменения внутренней энергии тела при теплообмене. Обозначается буквой Q .

Единица измерения количества теплоты = 1 Дж.

Количество теплоты, полученное телом от другого тела в результате теплообмена, может тратиться на увеличение температуры (увеличение кинетической энергии молекул) или на изменение агрегатного состояния (увеличение потенциальной энергии).

3.Удельная теплоёмкость вещества.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры Т 1 до температуры Т 2 пропорционально массе тела m и разности температур (Т 2 – Т 1), т.е.

Q = cm 2 – Т 1 ) = с m Δ Т,

с называется удельной теплоёмкостью вещества нагреваемого тела.

Удельная теплоёмкость вещества равна количеству теплоту, которое необходимо сообщить 1 кг вещества, чтобы нагреть его на 1 К.

Единица измерения удельной теплоёмкости =.

Значения теплоёмкости различных веществ можно найти в физических таблицах.

Точно такое же количество теплоты Q будет выделяться при охлаждении тела на ΔТ.

4.Удельная теплота парообразования.

Опыт показывает, что количество теплоты, необходимое для превращения жидкости в пар, пропорционально массе жидкости, т.е.

Q = Lm ,

где коэффициент пропорциональности L называется удельной теплотой парообразования.

Удельная теплота парообразования равна количеству теплоты, которое необходимо для превращения в пар 1 кг жидкости, находящейся при температуре кипения.

Единица измерения удельной теплоты парообразования .

При обратном процессе, конденсации пара, теплота выделяется в том же количестве, которое затрачено на парообразование.

5.Удельная теплота плавления.

Опыт показывает, что количество теплоты, необходимое для превращения твёрдого тела в жидкость, пропорционально массе тела, т.е.

Q = λ m ,

где коэффициент пропорциональности λ называется удельной теплотой плавления.

Удельная теплота плавления равна количеству теплоты, которое необходимо для превращения в жидкость твёрдого тела массой 1 кг при температуре плавления.

Единица измерения удельной теплоты плавления .

При обратном процессе, кристаллизации жидкости, теплота выделяется в том же количестве, которое затрачено на плавление.

6.Удельная теплота сгорания.

Опыт показывает, что количество теплоты, выделяемое при полном сгорании топлива, пропорционально массе топлива, т.е.

Q = q m ,

Где коэффициент пропорциональности q называется удельной теплотой сгорания.

Удельная теплота сгорания равна количеству теплоты, которое выделяется при полном сгорании 1 кг топлива.

Единица измерения удельной теплоты сгорания.

7.Уравнение теплового баланса.

В теплообмене участвуют два или более тела. Одни тела отдают теплоту, а другие принимают. Теплообмен происходит до тех пор, пока температуры тел не станут равными. По закону сохранения энергии, количество теплоты, которое отдаётся, равно количеству, которое принимается. На этом основании записывается уравнение теплового баланса.

Рассмотрим пример.

Тело массой m 1 , теплоёмкость которого с 1 , имеет температуру Т 1 , а тело массой m 2 , теплоёмкость которого с 2 , имеет температуру Т 2 . Причём Т 1 больше Т 2 . Эти тела приведены в соприкосновение. Опыт показывает, что холодное тело (m 2) начинает нагреваться, а горячее тело (m 1) – охлаждаться. Это говорит о том, что часть внутренней энергии горячего тела передаётся холодному, и температуры выравниваются. Обозначим конечную общую температуру θ.

Количество теплоты, переданной горячим телом холодному

Q передан. = c 1 m 1 1 θ )

Количество теплоты, полученной холодным телом от горячего

Q получен. = c 2 m 2 (θ Т 2 )

По закону сохранения энергии Q передан. = Q получен. , т.е.

c 1 m 1 1 θ )= c 2 m 2 (θ Т 2 )

Раскроем скобки и выразим значение общей установившейся температуры θ.

Значение температуры θ в данном случае получим в кельвинах.

Однако, так как в выражениях для Q передан. и Q получен. стоит разность двух температур, а она и в кельвинах, и в градусах Цельсия одинакова, то расчёт можно вести и в градусах Цельсия. Тогда

В этом случае значение температуры θ получим в градусах Цельсия.

Выравнивание температур в результате теплопроводности можно объяснить на основании молекулярно-кинетической теории как обмен кинетической энергией между молекулами при сталкивании в процессе теплового хаотического движения.

Этот пример можно проиллюстрировать графиком.

Понятие о количестве теплоты сформировалось на ранних стадиях развития современной физики, когда еще не существовало внятных представлений о внутреннем строении вещества, о том, что такое энергия, о том какие формы энергии существуют в природе и об энергии, как форме движения и превращения материи.

Под количеством теплоты понимается физическая величина эквивалентная переданной материальному телу энергии в процессе теплового обмена.

Устаревшей единицей количества теплоты является калория, равная 4.2 Дж, сегодня данная единица практически не применяется, а ее место занял джоуль.

Изначально предполагалось, что переносчиком тепловой энергии является некая совершенно невесомая среда, имеющая свойства жидкости. Многочисленные физические задачи теплопереноса решались и до сих пор решаются исходя из такой предпосылки. Существование гипотетического теплорода было положено в основу множества правильных в сущности построений. Считалось, что теплород выделяется и поглощается в явлениях нагрева и остывания, плавления и кристаллизации. Верные уравнения процессов теплообмена были получены исходя из неверных физических концепций. Известен закон, согласно которому количество теплоты прямо пропорционально массе тела, участвующего в теплообмене, и градиенту температуры:

Где Q – количество теплоты, m масса тела, а коэффициент с – величина, получившая название удельной теплоемкости. Удельная теплоемкость – есть характеристика вещества участвующего в процессе.

Работа в термодинамике

В результат тепловых процессов может совершаться чисто механическая работа. Например, нагреваясь, газ увеличивает свой объем. Возьмем ситуацию, как на рисунке ниже:

В данном случае механическая работа окажется равной силе давления газа на поршень умноженной на путь, проделанный поршнем под давлением. Разумеется, это простейший случай. Но даже в нем можно заметить одну сложность: сила давления будет зависеть от объема газа, а, значит, мы имеем дело не с константами, а с переменными величинами. Поскольку все три переменные: давление, температура и объем связаны друг с другом, то подсчет работы существенно усложняется. Выделяют некоторые идеальные, бесконечно-медленные процессы: изобарный, изотермический, адиабатный и изохорный – для которых такие расчеты можно выполнить относительно просто. Строится график зависимости давления от объема и работа вычисляется как интеграл вида.

Что быстрее нагреется на плите - чайник или ведро воды? Ответ очевиден - чайник. Тогда второй вопрос - почему?

Ответ не менее очевиден - потому что масса воды в чайнике меньше. Отлично. А теперь вы можете проделать самостоятельно самый настоящий физический опыт в домашних условиях. Для этого вам понадобится две одинаковые небольшие кастрюльки, равное количество воды и растительного масла, например, по пол-литра и плита. На одинаковый огонь ставите кастрюльки с маслом и водой. А теперь просто наблюдайте, что быстрее будет нагреваться. Если есть градусник для жидкостей, можно применить его, если нет, можно просто пробовать температуру время от времени пальцем, только осторожно, чтобы не обжечься. В любом случае вы вскоре убедитесь, что масло нагревается значительно быстрее воды. И еще один вопросик, который тоже можно реализовать в виде опыта. Что быстрее закипит - теплая вода или холодная? Все снова очевидно - теплая будет на финише первой. К чему все эти странные вопросы и опыты? К тому, чтобы определить физическую величину, называемую «количеством теплоты».

Количество теплоты

Количество теплоты - это энергия, которую тело теряет или приобретает при теплопередаче. Это понятно и из названия. При остывании тело будет терять некое количество теплоты, а при нагревании - поглощать. А ответы на наши вопросы показали нам, от чего зависит количество теплоты? Во-первых, чем больше масса тела, тем большее количество теплоты надо затратить на изменение его температуры на один градус. Во-вторых, количество теплоты, необходимое для нагревания тела, зависит от того вещества, из которого оно состоит, то есть от рода вещества. И в-третьих, разность температур тела до и после теплопередачи также важна для наших расчетов. Исходя из всего вышесказанного, мы можем определить количество теплоты формулой:

Q=cm(t_2-t_1) ,

где Q - количество теплоты,
m - масса тела,
(t_2-t_1) - разность между начальной и конечной температурами тела,
c - удельная теплоемкость вещества, находится из соответствующих таблиц.

По этой формуле можно произвести расчет количества теплоты, которое необходимо, чтобы нагреть любое тело или которое это тело выделит при остывании.

Измеряется количество теплоты в джоулях (1 Дж), как и всякий вид энергии. Однако, величину эту ввели не так давно, а измерять количество теплоты люди начали намного раньше. И пользовались они единицей, которая широко используется и в наше время - калория (1 кал). 1 калория - это такое количество теплоты, которое потребуется для нагреванияь 1 грамма воды на 1 градус Цельсия. Руководствуясь этими данными, любители подсчитывать калории в съедаемой пище, могут ради интереса подсчитать, сколько литров воды можно вскипятить той энергией, которую они потребляют с едой в течение дня.

Теплоемкость - это количество теплоты, поглощаемой телом при нагревании на 1 градус.

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой - растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком - 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.



Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 -t 1) ,

гдеQ - количество теплоты, c - удельная теплоемкость, m - масса тела, t 1 - начальная темпе­ратура, t 2 - конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q >0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле: Q = C (t 2 - t 1).

22) Плавление: определение, расчет количества теплоты на плавление или отвердевание, удельная теплота плавления, график зависимости t 0 (Q).

Термодинамика

Раздел молекулярной физики, который изучает передачу энергии, закономерности превращения одних видов энергии в другие. В отличие от молекулярно-кинетической теории, в термодинамике не учитывается внутреннее строение веществ и микропараметры.

Термодинамическая система

Это совокупность тел, которые обмениваются энергией (в форме работы или теплоты) друг с другом или с окружающей средой. Например, вода в чайнике остывает, происходит обмен теплотой воды с чайником и чайника с окружающей средой. Цилиндр с газом под поршнем: поршень выполняет работу, в результате чего, газ получает энергию, и изменяются его макропараметры.

Количество теплоты

Это энергия , которую получает или отдает система в процессе теплообмена. Обозначается символом Q, измеряется, как любая энергия, в Джоулях.

В результате различных процессов теплообмена энергия, которая передается, определяется по-своему.

Нагревание и охлаждение

Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле



Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость - известная, уже вычисленная для всех веществ величина, значение смотреть в физических таблицах.

Теплоемкость вещества С - это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.

Плавление и кристаллизация

Плавление - переход вещества из твердого состояния в жидкое. Обратный переход называется кристаллизацией.

Энергия, которая тратится на разрушение кристаллической решетки вещества, определяется по формуле

Удельная теплота плавления известная для каждого вещества величина, значение смотреть в физических таблицах.

Парообразование (испарение или кипение) и конденсация

Парообразование - это переход вещества из жидкого (твердого) состояния в газообразное. Обратный процесс называется конденсацией.

Удельная теплота парообразования известная для каждого вещества величина, значение смотреть в физических таблицах.

Горение

Количество теплоты, которое выделяется при сгорании вещества

Удельная теплота сгорания известная для каждого вещества величина, значение смотреть в физических таблицах.

Для замкнутой и адиабатически изолированной системы тел выполняется уравнение теплового баланса. Алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующим в теплообмене, равна нулю:

Q 1 +Q 2 +...+Q n =0

23) Строение жидкостей. Поверхностный слой. Сила поверхностного натяжения: примеры проявления, расчет, коэффициент поверхностного натяжения.

Время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (рис. 3.5.1).

Коэффициент β называют температурным коэффициентом объемного расширения . Этот коэффициент у жидкостей в десятки раз больше, чем у твердых тел. У воды, например, при температуре 20 °С β в ≈ 2·10 – 4 К – 1 , у стали β ст ≈ 3,6·10 – 5 К – 1 , у кварцевого стекла β кв ≈ 9·10 – 6 К – 1 .

Тепловое расширение воды имеет интересную и важную для жизни на Земле аномалию. При температуре ниже 4 °С вода расширяется при понижении температуры (β < 0). Максимум плотности ρ в = 10 3 кг/м 3 вода имеет при температуре 4 °С.

При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0 °С. В более плотных слоях воды у дна водоема температура оказывается порядка 4 °С. Благодаря этому жизнь может существовать в воде замерзающих водоемов.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности . Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости.. Следует иметь ввиду, что вследствие крайне низкой сжимаемости наличие более плотно упакованного поверхностного слоя не приводит к сколь-нибудь заметному изменению объема жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), внешние силы должны совершить положительную работу ΔA внеш, пропорциональную изменению ΔS площади поверхности:

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения .

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Некоторые жидкости, как, например, мыльная вода, обладают способностью образовывать тонкие пленки. Всем хорошо известные мыльные пузыри имеют правильную сферическую форму – в этом тоже проявляется действие сил поверхностного натяжения. Если в мыльный раствор опустить проволочную рамку, одна из сторон которой подвижна, то вся она затянется пленкой жидкости (рис. 3.5.3).

Силы поверхностного натяжения стремятся сократить поверхность пленки. Для равновесия подвижной стороны рамки к ней нужно приложить внешнюю силу Если под действием силы перекладина переместится на Δx , то будет произведена работа ΔA вн = F вн Δx = ΔE p = σΔS , где ΔS = 2L Δx – приращение площади поверхности обеих сторон мыльной пленки. Так как модули сил и одинаковы, можно записать:

Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность .

Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает избыточное давление Δp . Если мысленно разрезать сферическую каплю радиуса R на две половинки, то каждая из них должна находиться в равновесии под действием сил поверхностного натяжения, приложенных к границе разреза длиной 2πR и сил избыточного давления, действующих на площадь πR 2 сечения (рис. 3.5.4). Условие равновесия записывается в виде

Если эти силы больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела. В этом случае жидкость подходит к поверхности твердого тела под некоторым острым углом θ, характерным для данной пары жидкость – твердое тело. Угол θ называется краевым углом . Если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела, то краевой угол θ оказывается тупым (рис. 3.5.5). В этом случае говорят, что жидкость не смачивает поверхность твердого тела. При полном смачивании θ = 0, при полном несмачивании θ = 180°.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах . Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются.

На рис. 3.5.6 изображена капиллярная трубка некоторого радиуса r , опущенная нижним концом в смачивающую жидкость плотности ρ. Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей F н сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: F т = F н, где F т = mg = ρh πr 2 g , F н = σ2πr cos θ.

Отсюда следует:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде.

24) Парообразование: определение, виды (испарение, кипение), расчет количества теплоты на парообразование и конденсацию, удельная теплота парообразования.

Испарение и конденсация. Объяснение явления испарения на основе представлений о молекулярном строении вещества. Удельная теплота парообразования. Ее единицы.

Явление превращения жидкости в пар называется парообразованием.

Испарение -процесс парообразования, происходящий с открытой поверхности.

Молекулы жидкости движутся с разными скоростями. Если какая-нибудь молекула окажется у поверхности жидкости, она может преодолеть притяжение соседних молекул и вылететь из жидкости. Вылетевшие молекулы образуют пар. У оставшихся молекул жидкости при соударении меняются скорости. Некоторые молекулы при этом приобретают скорость, достаточную для того, чтобы вылететь из жидкости. Этот процесс продолжается, поэтому жидкости испаряются медленно.

*Скорость испарения зависит от рода жидкости. Быстрее испаряются те жидкости, у которых молекул притягиваются с меньшей силой..

*Испарение может происходить при любой температуре. Но при высоких температурах испарение происходит быстрее.

*Скорость испарения зависит от площади ее поверхности.

*При ветре (потоке воздуха) испарение происходит быстрее.

При испарении внутренняя энергия уменьшается, т.к. при испарении жидкость покидают быстрые молекулы, следовательно, средняя скорость остальных молекул уменьшается. Значит, что если нет притока энергии из вне, то температура жидкости уменьшается.

Явление превращения пара в жидкость называется конденсацией. Она сопровождается выделением энергии.

Конденсацией пара объясняется образование облаков. Пары воды, поднимающиеся над землей, образуют в верхних холодных слоях воздуха облака, которые состоят из мельчайших капель воды.

Удельная теплота парообразования – физ. величина, показывающая какое кол-во теплоты необходимо, чтобы обратить жидкость массой 1 кг в пар без изменения температуры.

Уд. теплоту парообразования обозначают буквой L и измеряется в Дж/кг

Уд. теплоту парообразования воды:L=2,3×10 6 Дж/кг, спирт L=0,9×10 6

Кол-во теплоты, необходимое для превращения жидкости в пар: Q = Lm