Обратные тригонометрические функции и их свойства. Обратные тригонометрические функции, их графики и формулы

Обра́тные тригонометри́ческие фу́нкции-это математические функции, являющиеся обратными тригонометрическим функциям.

Функция y=arcsin(x)

Арксинусом числа α называют такое число α из промежутка [-π/2;π/2], синус которого равен α.
График функции
Функция у= sin⁡(x) на отрезке [-π/2;π/2], строго возрастает и непрерывна; следовательно, она имеет обратную функцию, строго возрастающую и непрерывную.
Функция, обратная для функции у= sin⁡(x), где х ∈[-π/2;π/2], называется арксинусом и обозначается y=arcsin(x),где х∈[-1;1].
Итак, согласно определению обратной функции, областью определения арксинуса является отрезок [-1;1], а множеством значений - отрезок [-π/2;π/2].
Отметим, что график функцииy=arcsin(x),где х ∈[-1;1].симметричен графику функции у= sin(⁡x), где х∈[-π/2;π/2],относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcsin(x).

Пример№1.

Найти arcsin(1/2)?

Так как область значений функцииarcsin(x)принадлежит промежутку [-π/2;π/2], то подходит только значениеπ/6 .Следовательноarcsin(1/2) =π/6.
Ответ:π/6

Пример №2.
Найти arcsin(-(√3)/2)?

Так как область значений arcsin(x) х ∈[-π/2;π/2], то подходит только значение -π/3.Следовательноarcsin(-(√3)/2) =- π/3.

Функция y=arccos(x)

Арккосинусом числа α называют такое число α из промежутка , косинус которого равен α.

График функции

Функция у= cos(⁡x) на отрезке , строго убывает и непрерывна; следовательно, она имеет обратную функцию, строго убывающую и непрерывную.
Функция, обратная для функции у= cos⁡x, где х ∈, называется арккосинусом и обозначается y=arccos(x),где х ∈[-1;1].
Итак, согласно определению обратной функции, областью определения арккосинуса является отрезок [-1;1], а множеством значений - отрезок .
Отметим, что график функцииy=arccos(x),где х ∈[-1;1] симметричен графику функции у= cos(⁡x), где х ∈,относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arccos(x).

Пример №3.

Найти arccos(1/2)?


Так как область значений arccos(x) х∈, то подходит только значение π/3.Следовательно arccos(1/2) =π/3.
Пример №4.
Найти arccos(-(√2)/2)?

Так как область значений функции arccos(x) принадлежит промежутку , то подходит только значение 3π/4.Следовательноarccos(-(√2)/2) =3π/4.

Ответ: 3π/4

Функция y=arctg(x)

Арктангенсом числа α называют такое число α из промежутка [-π/2;π/2], тангенс которого равен α.

График функции

Функция тангенс непрерывная и строго возрастающая на интервале(-π/2;π/2); следовательно, она имеет обратную функцию, которая непрерывна и строго возрастает.
Функция, обратная для функции у= tg⁡(x), где х∈(-π/2;π/2); называется арктангенсом и обозначается y=arctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арктангенса является интервал(-∞;+∞), а множеством значений - интервал
(-π/2;π/2).
Отметим, что график функции y=arctg(x),где х∈R, симметричен графику функции у= tg⁡x, где х ∈ (-π/2;π/2), относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arctg(x).

Пример№5?

Найти arctg((√3)/3).

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение π/6 .Следовательноarctg((√3)/3) =π/6.
Пример№6.
Найти arctg(-1)?

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение -π/4 .Следовательноarctg(-1) = - π/4.

Функция y=arcctg(x)


Арккотангенсом числа α называют такое число α из промежутка (0;π), котангенс которого равен α.

График функции

На интервале (0;π),функция котангенс строго убывает; кроме того,она непрерывна в каждой точке этого интервала; следовательно, на интервале (0;π), эта функция имеет обратную функцию, которая является строго убывающей и непрерывной.
Функция, обратная для функции у=ctg(x), где х ∈(0;π), называется арккотангенсом и обозначается y=arcctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арккотангенса будет R,а множеством значений –интервал (0;π).График функции y=arcctg(x),где х∈R симметричен графику функции y=ctg(x) х∈(0;π),относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcctg(x).




Пример№7.
Найти arcctg((√3)/3)?


Так как область значений arcctg(x) х ∈(0;π), то подходит только значение π/3.Следовательно arccos((√3)/3) =π/3.

Пример№8.
Найти arcctg(-(√3)/3)?

Так как область значений arcctg(x) х∈(0;π), то подходит только значение 2π/3.Следовательноarccos(-(√3)/3) =2π/3.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

В ряде задач математики и её приложений требуется по известному значению тригонометрической функции найти соответствующее значение угла, выраженное в градусной или в радианной мере. Известно, что одному и тому же значению синуса соответствует бесконечное множество углов, например, если $\sin α=1/2,$ то угол $α$ может быть равен и $30°$ и $150°,$ или в радианной мере $π/6$ и $5π/6,$ и любому из углов, который получается из этих прибавлением слагаемого вида $360°⋅k,$ или соответственно $2πk,$ где $k$ - любое целое число. Это становится ясным и из рассмотрения графика функции $y=\sin x$ на всей числовой прямой (см. рис. $1$): если на оси $Oy$ отложить отрезок длины $1/2$ и провести прямую, параллельную оси $Ox,$ то она пересечет синусоиду в бесконечном множестве точек. Чтобы избежать возможного разнообразия ответов, вводятся обратные тригонометрические функции, иначе называемые круговыми, или аркфункциями (от латинского слова arcus - «дуга»).

Основным четырем тригонометрическим функциям $\sin x,$ $\cos x,$ $\mathrm{tg}\,x$ и $\mathrm{ctg}\,x$ соответствуют четыре аркфункции $\arcsin x,$ $\arccos x,$ $\mathrm{arctg}\,x$ и $\mathrm{arcctg}\,x$ (читается: арксинус, арккосинус, арктангенс, арккотангенс). Рассмотрим функции \arcsin x и \mathrm{arctg}\,x, поскольку две другие выражаются через них по формулам:

$\arccos x = \frac{π}{2} − \arcsin x,$ $\mathrm{arcctg}\,x = \frac{π}{2} − \mathrm{arctg}\,x.$

Равенство $y = \arcsin x$ по определению означает такой угол $y,$ выраженный в радианной мере и заключенный в пределах от $−\frac{π}{2}$ до $\frac{π}{2},$ синус которого равен $x,$ т. е. $\sin y = x.$ Функция $\arcsin x$ является функцией, обратной функции $\sin x,$ рассматриваемой на отрезке $\left[−\frac{π}{2},+\frac{π}{2}\right],$ где эта функция монотонно возрастает и принимает все значения от $−1$ до $+1.$ Очевидно, что аргумент $y$ функции $\arcsin x$ может принимать значения лишь из отрезка $\left[−1,+1\right].$ Итак, функция $y=\arcsin x$ определена на отрезке $\left[−1,+1\right],$ является монотонно возрастающей, и её значения заполняют отрезок $\left[−\frac{π}{2},+\frac{π}{2}\right].$ График функции показан на рис. $2.$

При условии $−1 ≤ a ≤ 1$ все решения уравнения $\sin x = a$ представим в виде $x=(−1)^n \arcsin a + πn,$ $n=0,±1,± 2,… .$ Например, если

$\sin x = \frac{\sqrt{2}}{2}$ то $x = (−1)^n \frac{π}{4}+πn,$ $n = 0, ±1, ±2, … .$

Соотношение $y=\mathrm{arcctg}\,x$ определено при всех значениях $x$ и по определению означает, что угол $y,$ выраженный в радианной мере, заключей в пределах

$−\frac{π}{2}

и тангенс этого угла равен x, т. е. $\mathrm{tg}\,y = x.$ Функция $\mathrm{arctg}\,x$ определена на всей числовой прямой, является функцией, обратной функции $\mathrm{tg}\,x$, которая рассматривается лишь на интервале

$−\frac{π}{2}

Функция $у = \mathrm{arctg}\,x$ монотонно возрастающая, её график дан на рис. $3.$

Все решения уравнения $\mathrm{tg}\,x = a$ могут быть записаны в виде $x=\mathrm{arctg}\,a+πn,$ $n=0,±1,±2,… .$

Заметим, что обратные тригонометрические функции широко используются в математическом анализе. Например, одной из первых функций, для которых было получено представление бесконечным степенным рядом, была функция $\mathrm{arctg}\,x.$ Из этого ряда Г. Лейбниц при фиксированном значении аргумента $x=1$ получил знаменитое представление числа к бесконечным рядом

    К обратным тригонометрическим функциям относятся следующие 6 функций: арксинус , арккосинус , арктангенс , арккотангенс , арксеканс и арккосеканс .

    Поскольку исходные тригонометрические функции периодические, то обратные функции, вообще говоря, являются многозначными . Чтобы обеспечить однозначное соответствие между двумя переменными, области определения исходных тригонометрических функций ограничивают, рассматривая лишь их главные ветви . Например, функция \(y = \sin x\) рассматривается лишь в промежутке \(x \in \left[ { - \pi /2,\pi /2} \right]\). На этом интервале обратная функция арксинус определена однозначно.

    Функция арксинус
    Арксинусом числа \(a\) (обозначается \(\arcsin a\)) называется значение угла \(x\) в интервале \(\left[ { - \pi /2,\pi /2} \right]\), при котором \(\sin x = a\). Обратная функция \(y = \arcsin x\) определена при \(x \in \left[ { -1,1} \right]\), область ее значений равна \(y \in \left[ { - \pi /2,\pi /2} \right]\).

    Функция арккосинус
    Арккосинусом числа \(a\) (обозначается \(\arccos a\)) называется значение угла \(x\) в интервале \(\left[ {0,\pi} \right]\), при котором \(\cos x = a\). Обратная функция \(y = \arccos x\) определена при \(x \in \left[ { -1,1} \right]\), область ее значений принадлежит отрезку \(y \in \left[ {0,\pi} \right]\).

    Функция арктангенс
    Арктангенсом числа a (обозначается \(\arctan a\)) называется значение угла \(x\) в открытом интервале \(\left({-\pi/2, \pi/2} \right)\), при котором \(\tan x = a\). Обратная функция \(y = \arctan x\) определена при всех \(x \in \mathbb{R}\), область значений арктангенса равна \(y \in \left({-\pi/2, \pi/2} \right)\).

    Функция арккотангенс
    Арккотангенсом числа \(a\) (обозначается \(\text{arccot } a\)) называется значение угла \(x\) в открытом интервале \(\left[ {0,\pi} \right]\), при котором \(\cot x = a\). Обратная функция \(y = \text{arccot } x\) определена при всех \(x \in \mathbb{R}\), область ее значений находится в интервале \(y \in \left[ {0,\pi} \right]\).

    Функция арксеканс
    Арксекансом числа \(a\) (обозначается \(\text{arcsec } a\)) называется значение угла \(x\), при котором \(\sec x = a\). Обратная функция \(y = \text{arcsec } x\) определена при \(x \in \left({ - \infty , - 1} \right] \cup \left[ {1,\infty } \right)\), область ее значений принадлежит множеству \(y \in \left[ {0,\pi /2} \right) \cup \left({\pi /2,\pi } \right]\).

    Функция арккосеканс
    Арккосекансом числа \(a\) (обозначается \(\text{arccsc } a\) или \(\text{arccosec } a\)) называется значение угла \(x\), при котором \(\csc x = a\). Обратная функция \(y = \text{arccsc } x\) определена при \(x \in \left({ - \infty , - 1} \right] \cup \left[ {1,\infty } \right)\), область ее значений принадлежит множеству \(y \in \left[ { - \pi /2,0} \right) \cup \left({0,\pi /2} \right]\).

    Главные значения функций арксинус и арккосинус (в градусах)

    \(x\) \(-1\) \(-\sqrt 3/2\) \(-\sqrt 2/2\) \(-1/2\) \(0\) \(1/2\) \(\sqrt 2/2\) \(\sqrt 3/2\) \(1\)
    \(\arcsin x\) \(-90^\circ\) \(-60^\circ\) \(-45^\circ\) \(-30^\circ\) \(0^\circ\) \(30^\circ\) \(45^\circ\) \(60^\circ\) \(90^\circ\)
    \(\arccos x\) \(180^\circ\) \(150^\circ\) \(135^\circ\) \(120^\circ\) \(90^\circ\) \(60^\circ\) \(45^\circ\) \(30^\circ\) \(0^\circ\)

    Главные значения функций арктангенс и арккотангенс (в градусах)

    \(x\) \(-\sqrt 3\) \(-1\) \(-\sqrt 3/3\) \(0\) \(\sqrt 3/3\) \(1\) \(\sqrt 3\)
    \(\arctan x\) \(-60^\circ\) \(-45^\circ\) \(-30^\circ\) \(0^\circ\) \(30^\circ\) \(45^\circ\) \(60^\circ\)
    \(\text{arccot } x\) \(150^\circ\) \(135^\circ\) \(120^\circ\) \(90^\circ\) \(60^\circ\) \(45^\circ\) \(30^\circ\)

Обратные тригонометрические функции (круговые функции, аркфункции) — математические функции, которые являются обратными к тригонометрическим функциям .

К ним обычно относят 6 функций:

  • арксинус (обозначение: arcsin x ; arcsin x — это угол, sin которого равен x ),
  • арккосинус (обозначение: arccos x ; arccos x — это угол, косинус которого равняется x и так далее),
  • арктангенс (обозначение: arctg x или arctan x ),
  • арккотангенс (обозначение: arcctg x или arccot x или arccotan x ),
  • арксеканс (обозначение: arcsec x ),
  • арккосеканс (обозначение: arccosec x или arccsc x ).

Арксинус (y = arcsin x ) - обратная функция к sin (x = sin y . Другими словами возвращает угол по значению его sin .

Арккосинус (y = arccos x ) - обратная функция к cos (x = cos y cos .

Арктангенс (y = arctg x ) - обратная функция к tg (x = tg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его tg .

Арккотангенс (y = arcctg x ) - обратная функция к ctg (x = ctg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его ctg .

arcsec - арксеканс, возвращает угол по значению его секанса.

arccosec - арккосеканс, возвращает угол по значению его косеканса.

Когда обратная тригонометрическая функция не определяется в указанной точке, значит, ее значение не появится в итоговой таблице. Функции arcsec и arccosec не определяются на отрезке (-1,1), а arcsin и arccos определяются только на отрезке [-1,1].

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции прибавлением приставки «арк-» (от лат. arc us — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции связывают с длиной дуги единичной окружности (либо углом, который стягивает эту дугу), которая соответствует тому либо другому отрезку.

Иногда в зарубежной литературе, как и в научных/инженерных калькуляторах , используют обозначениями вроде sin −1 , cos −1 для арксинуса, арккосинуса и тому подобное, — это считается не полностью точным, т.к. вероятна путаница с возведением функции в степень −1 −1 » (минус первая степень) определяет функцию x = f -1 (y) , обратную функции y = f (x) ).

Основные соотношения обратных тригонометрических функций.

Здесь важно обратить внимание на интервалы, для которых справедливы формулы.

Формулы, связывающие обратные тригонометрические функции.

Обозначим любое из значений обратных тригонометрических функций через Arcsin x , Arccos x , Arctan x , Arccot x и сохраним обозначения: arcsin x , arcos x , arctan x , arccot x для их главных значений, тогда связь меж ними выражается такими соотношениями.

Обратные тригонометрические функции - это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом Или, можно сказать, что это такой угол , принадлежащий отрезку , синус которого равен числу а.

Арккосинусом числа а называется число , такое, что

Арктангенсом числа а называется число , такое, что

Арккотангенсом числа а называется число , такое, что

Расскажем подробно об этих четырех новых для нас функциях - обратных тригонометрических.

Помните, мы уже встречались с .

Например, арифметический квадратный корень из числа а - такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a - такое число с, что

При этом

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения - это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения - иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку , синус которого равен - это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, - это

А вторая серия решений нашего уравнения - это

Подробнее о решении тригонометрических уравнений - .

Осталось выяснить - зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку ?

Дело в том, что углов, синус которых равен, например, , бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке .

Взгляните на тригонометрический круг. Вы увидите, что на отрезке каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка отвечает одно-единственное значение угла на отрезке . Это значит, что на отрезке можно задать функцию принимающую значения от до

Повторим определение еще раз:

Арксинусом числа a называется число , такое, что

Обозначение: Область определения арксинуса - отрезок Область значений - отрезок .

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке .

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у - по вертикальной.

Поскольку , следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок

Мы сказали, что у принадлежит отрезку . Это значит, что областью значений функции y = arcsin x является отрезок .

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля - это такое число из отрезка , синус которого равен нулю. Что это за число? - Понятно, что это ноль.

Аналогично, арксинус единицы - это такое число из отрезка , синус которого равен единице. Очевидно, это

Продолжаем: - это такое число из отрезка , синус которого равен . Да, это

0
0

Строим график функции

Свойства функции

1. Область определения

2. Область значений

3. , то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция монотонно возрастает. Ее наименьшее значение, равное - , достигается при , а наибольшее значение, равное , при

5. Что общего у графиков функций и ? Не кажется ли вам, что они «сделаны по одному шаблону» - так же, как правая ветвь функции и график функции , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от до , а затем развернули его вертикально - и мы получим график арксинуса.

То, что для функции на этом промежутке - значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус - взаимно-обратные функции. Другие примеры пар взаимно обратных функций - это при и , а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса - отрезок Область значений - отрезок

Очевидно, отрезок выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Построим график функции

Нам нужен такой участок функции , на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок . На этом отрезке функция монотонно убывает, то есть соответствие между множествами и взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку , будет такое число y, принадлежащее промежутку , что

Значит, , поскольку ;

Так как ;

Так как ,

Так как ,

0
0

Вот график арккосинуса:

Свойства функции

1. Область определения

2. Область значений

Эта функция общего вида - она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное , функция у = arccosx принимает при , а наименьшее значение, равное нулю, принимает при

5. Функции и являются взаимно обратными.

Следующие - арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

Обозначение: . Область определения арктангенса - промежуток Область значений - интервал .

Почему в определении арктангенса исключены концы промежутка - точки ? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу , такое, что

Как строить график - уже понятно. Поскольку арктангенс - функция обратная тангенсу, мы поступаем следующим образом:

Выбираем такой участок графика функции , где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция принимает значения от до

Тогда у обратной функции, то есть у функции , область, определения будет вся числовая прямая, от до а областью значений - интервал

Значит,

Значит,

Значит,

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? - Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке - график функции

Свойства функции

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

6. Функции и являются взаимно обратными - конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

График функции :

Свойства функции

1. Область определения

2. Область значений

3. Функция - общего вида, то есть ни четная, ни нечетная.

4. Функция является строго убывающей.

5. Прямые и - горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке