Гарантированное бесперебойное электропитание. Cистемы электропитания

Работа большинства современных организаций строится на использовании техники, чувствительной к качеству энергии. Выход из строя компьютеров, банковской и медицинской аппаратуры, системы автоматики и других приборов влечет за собой серьезные последствия, которые порой могут быть непоправимы. Существующая система питания несовершенна, и процесс снабжения может внезапно прерваться. Чтобы этго не произошло, рекомендуется применение:

  • систем бесперебойного электропитания (СБЭ), работа которых базируется на базе источников бесперебойного питания (ИБП, UPS);
  • систем гарантированного электропитания (СГЭ), работа которых базируется на дизельгенераторных электростанций (ДЭС, ДГУ);
  • систем бесперебойного и гарантированного электропитания, как сочетание двух вышеперечисленных систем.

Как правило, задача обеспечить бесперебойное питание возлагается на ИБП и дизельные генераторы, которые берут на себя питание ответственного потребителя на период отсутствия электричества в сети. Тем не менее, в данном случае играют роль и вспомогательные решения, среди которых может быть резервирование подвода силовых линий, системы тушения пожара и защиты от молнии. Важно понимать, что гарантированное электропитание должно быть обеспечено в условиях любых экстремальных ситуаций.

Ключевыми характеристика систем бесперебойного питания являются надежность, отказоустойчивость, энергоэффективность. Тем не менее, экономия электроэнергии, увеличение сроков эксплуатации аккумуляторов и увеличение КПД аппаратуры служат лишь частью решения задачи. К прочим значимым направлениям можно отнести разработку мощных аккумуляторных батарей и применение кинетических накопителей.

Экономия используемых ресурсов

Мир все больше внимания уделяет разработке и применению альтернативных источников электроэнергии, которые могли бы возобновляться сами по себе. Это особенно важно благодаря «зеленым тарифам», которые позволяют реализовывать излишек получаемой электроэнергии в сеть общественного использования, либо расходовать полученную энергию на личные нужды, понижая зависимость от внешних источников.

Дополнительной возможностью сэкономить энергоресурсы и увеличение эффективности бизнеса, служит подробный мониторинг затрат энергии и автоматизация процессов, связанных с этими расходами. Помочь в данном направлении могут особые технологии, именуемые «Интернет вещей» (IoT). Именно благодаря им оборудование стало работать на более «умной» автоматизации, да и сбор информации вышел на принципиально новый уровень.

Необходимость СГП в России

В России не только остро стоит вопрос электроснабжения, однако и наблюдаются проблемы с качеством электричества, которую поставляют потребителям по распределительным сетям общего назначения. Поэтому возникла необходимость в создании СГП - системы гарантированного питания. Она применяется в схеме релейной защиты, автоматики и технологической сигнализации электроустановок разного класса напряжения предприятий энергетики и других важных объектов.

СГП обеспечивает непрерывное питание ~ 220В:

  • от централизованной сети переменного тока ~220В в штатном режиме,
  • от резервной сети постоянного тока =220В при отключении напряжения в сети переменного тока, используя резерв аккумуляторов пользователя,
  • от ресурса батарей источника бесперебойного питания в отсутствие напряжений, как в сети переменного тока, так и в сети постоянного тока.

Преимущества СГП:

  • Стабильность параметров сети ~220В при подключении =220В с нулевым временем переключения в аварийный режим без возникновения переходного процесса на выходе устройства.
  • Пользователь может самостоятельно подключить СГП, поскольку ее конструкция проста и понятна.
  • При аварийных отключениях сохраняются регламентные требования.
  • Напряжение сети постоянного тока =220В в СГП производится тремя однотипными каналами, обеспечивая трехкратный запас надежности, если при аварии отказывает один канал, СГП сохраняет свою работоспособность.
  • Преобразователь напряжения работает в экономном режиме.
  • Эксплуатация практичная и долговечная.

Конструкция СГП предполагает применение унифицированных элементов: источника бесперебойного питания, блока питания постоянного напряжения (преобразователь постоянного напряжения), реле переменного тока. Если что-либо выходит из строя, деталь легко можно заменить аналогичной. При необходимости можно обратиться в сервисную службу, однако устройство целиком предназначено для самостоятельной эксплуатации.

В условиях нестабильного электроснабжения часто имеет смысл подстраховаться и оградить себя от неприятных сюрпризов, которые могут преподнести централизованные электросети.

Например, нередко можно наблюдать, как напряжение в сети падает или скачет. Нагляднее всего это можно заметить, обратив внимание на то, как светится обычная лампа накаливания - если она мерцает или горит вполнакала, значит, в вашей электросети возникла проблема. Недостаточный уровень напряжения или его перепады могут вызвать сбои в работе чувствительного оборудования, потерю компьютерных данных и другие неприятные последствия.

Также возможны резкие повышения напряжения, которые чаще всего вызваны короткими замыканиями или попаданием разряда молнии в провода или подстанцию. Несмотря на принимаемые меры по защите от грозы, такие случаи время от времени случаются и кроме сбоев в работе могут повлечь выход оборудования из строя.

Кроме перечисленных нарушений работы сети возможно и полное исчезновение напряжения - кратковременное или довольно долгое. В итоге парализуется производство, перестают работать различные системы - связи, охранные, обеспечения жизнедеятельности и прочие.

Поэтому в ряде случаев требуется принимать дополнительные меры и устанавливать оборудование, которое позволит свести к минимуму негативные последствия отказов централизованной электросети.

Различают два вида таких систем - системы бесперебойного электропитания и системы гарантированного электропитания. Ниже рассмотрим, чем они отличаются.

Различия систем бесперебойного и гарантированного электроснабжения

Система бесперебойного электроснабжения чаще всего подразумевает наличие источников бесперебойного питания (ИБП), которые при необходимости переключают запитанное от них оборудование на работу от аккумулятора. В штатном режиме работы электросети батареи ИБП заряжаются. Также ИБП оснащены сетевыми фильтрами, которые помогают отсекать высокочастотные помехи в электросети, перепады напряжения и прочее.

Такая мера эффективна, если у вас в сети наблюдаются кратковременные отключения или перепады напряжения - с такими неприятностями ИБП вполне эффективно справляются. Однако для того, чтобы поддерживать работу аппаратуры или оргтехники при длительном отключении, ресурсов бесперебойников недостаточно. Всё, что они смогут сделать в аварийной ситуации - дадут пользователям несколько минут на то, чтобы штатно выключить оргтехнику и сохранить необходимые данные.

Чтобы противостоять продолжительным отключениям электричества, требуются системы гарантированного электропитания, или сокращённо - СГЭ. Кроме источников бесперебойного питания подобная безопасная система предполагает наличие дизель-генераторной установки (сокращённо - ДГУ), выполняющей во время длительного отключения центральной электросети роль блока аварийного электроснабжения, и необходимого оборудования контроля и управления, которое даёт возможность ИБП и ДГУ взаимодействовать в комплексе.

Проектирование и установка бесперебойного питания оправданы в том случае, если часто наблюдаются выключения электричества, и на вашем объекте имеются потребители, для которых критичным считается бесперебойность и высокое качество электроснабжения.

При таких условиях убытки от сбоев в деятельности электросети могут оказаться столь значительными, что многократно превысят стоимость закупки и установки специального оборудования, также следует озаботиться установкой такой схемы подключения на стратегических объектах или же в том случае, когда отключение напряжения может повлечь человеческие жертвы.

Цель создания СГЭ и требования к ней

Итак, с целью создания на каком-либо объекте системы гарантированного электропитания всё ясно - такая система должна гарантировать стабильное высококачественное электроснабжение для ответственных потребителей энергии при некорректной работе централизованных электросетей. Результатом создания на объекте подобной системы является обеспечение нормальной работы оборудования при аварийной работе центрального электроснабжения.

При оснащении объекта системами гарантированного электропитания выделяют основные группы особо ответственных потребителей энергии, которые нуждаются в подсоединении к защищённой электросети.

Прежде всего, сюда относят сетевое оборудование, из которого состоит локальная компьютерная сеть - сервера, роутеры, персональные компьютеры и т.д. Также нуждается в безопасном подключении оборудование связи (в частности, АТС), системы обеспечения жизнедеятельности (вентиляция и системы кондиционирования), различное медицинское оборудование, от которого зависит здоровье и жизнь пациентов.

Охранные системы и системы безопасности (видеонаблюдение, охранная и пожарная сигнализация, система аварийного освещения и пожаротушения и прочие), тоже вполне оправдывают подключение к защищённой сети электропитания, так как последствия отказа таких систем могут быть довольно серьёзными.

Что касается требований, которые предъявляются к работе систем гарантированного электроснабжения, главными тут являются стабильное и бесперебойное электропитание всех запитанных от системы потребителей, максимальная защита от перепадов напряжения и высокая точность параметров выходного тока в плане соответствия существующим стандартам.

Также при проектировании и создании системы гарантированного электропитания важно учитывать удобство и эффективность пользования, для чего современные СГЭ имеют высокую степень автоматизации работы.

Так, необходимым условием для такой системы является оперативное реагирование на причуды электросети и автоматический перевод потребителей на работу от защищённой сети. При нормализации параметров центрального электроснабжения система также автоматически отключается.

Кроме того, важным является возможность удалённого администрирования системы в случае необходимости и наличия в ней средств информирования администратора о возникших проблемах.

Структура и принцип действия СГЭ

Поскольку каждый объект имеет свои особенности, конфигурация системы гарантированного электропитания в каждом случае разрабатывается под конкретные условия.

Однако, несмотря на то, что достаточно часто при разработке СГЭ приходится прибегать к нестандартным решениям, схематично такие системы обычно выглядят похожими.

Основными блоками системы, прежде всего, являются автономный источник энергии (обычно это дизель-генератор), один или несколько источников бесперебойного питания (ИБП), а также электропитающие установки постоянного тока. Также подобное безопасное и надёжное решение подразумевает использование средств контроля системы и её управления и специального программного обеспечения.

При нормальной работе централизованной сети питания дизель-генераторная установка пребывает в режиме ожидания, а электроснабжение подключенного оборудования производится через бесперебойники. Сами ИБП в этой ситуации также заряжают свои батареи, выполняя роль сетевого фильтра.

При возникновении в электрической сети сбоя контроллер системы запускает дизель-генератор, пока это происходит, работа подключенного оборудования осуществляется от ИБП. После того, как ДГУ вышла на заданные обороты, нагрузка переключается на неё, аккумуляторы ИБП при этом вновь подзаряжаются от дизеля.

После того, как проблемы работы централизованной электросети устранены, контроллер переключает оборудование с питания от ДГУ на внешнюю сеть. Во время этого процесса питание потребителей также производится от ИБП. Глушение дизельного двигателя установки тоже производится автоматически, после того, как оборудование перешло на штатное электропитание.

Время автономной работы потребителей от системы гарантированного электропитания зависит ресурса работы ДГУ (объём топлива в баке и его расход) и ёмкости батарей ИБП. Если ресурс топлива почти исчерпан, а централизованное электропитание не восстановилось, оператор должен принять решение о завершении работы потребителей или продолжать её до полного истощения ресурсов ДГУ и источника бесперебойного питания.

В заключение - несколько советов относительно того, чем следует руководствоваться при выборе производителя оборудования для оборудования системы аварийного электроснабжения .

Основными требованиями являются гарантированное электропитание, его высокое качество и надёжность работы поставляемого оборудования, а также соответствие его отечественным стандартам. Руководствуясь этим параметром, важно выбирать в качестве поставщика серьёзные компании, имеющие вес и авторитет на отечественном рынке силового оборудования.

Такие фирмы, к тому же, смогут гарантировать вам квалифицированную техническую поддержку и обслуживание поставляемой техники. Наконец, при поставке оборудования могут иметь значение и такие факторы, как оперативность поставки и приемлемые, экономически обоснованные цены на продукцию.

1.1. Необходимость в создании системы

Основная проблема, с которой приходится сталкиваться при решении вопроса о необходимости установки на объект дизель-генераторной установки (ДГУ) и источника бесперебойного электропитания (ИБП) - это обеспечение электроснабжения в случае исчезновения напряжения основной питающей сети потребителей I категории и потребителей I категории особой группы согласно ПУЭ.

К сожалению, на практике, нередкие ситуации выхода из стоя оборудования распределительной трансформаторной понижающей подстанции (РТП 10/0,4кВ или РТП 6/0,4кВ), сбой в электросетях района и т.п. Поэтому, 2-х вводов от РТП, как требует ПУЭ, на практике бывает недостаточно и на таких объектах существует необходимость в установке дизель-генераторной станции - гарантированное электропитание, и источников бесперебойного электропитания - бесперебойное электропитание.

Система гарантированного электропитания служит для обеспечения электроэнергией требуемого качества (ГОСТ 13109-87) потребителей I категории (ПУЭ гл.1.2.17), в случае исчезновения напряжения основной питающей сети.

Система бесперебойного электропитания служит для обеспечения электроэнергией требуемого качества (ГОСТ 13109-87) без разрыва синусоиды питающего напряжения потребителей I категории особой группы (ПУЭ гл.1.2.17).

2. Описание решения

2.1. Общие сведения

    Система гарантированного электроснабжения должна обеспечивать:
  • гарантированное электропитание подключенных потребителей;
  • автоматический запуск (суммарно не менее 3 попыток) дизель-генератора через 9 секунд при отклонении параметров основной внешней сети электропитания за пределы требования ГОСТ 13109-87 или полном ее исчезновении;
  • автоматическое переключение нагрузки с основной внешней сети электропитания на дизель-генератор и обратно;
  • выдача сигнала тревоги на пост диспетчера в случае аварийного события с оборудованием ДГУ
    Система бесперебойного электроснабжения должна обеспечивать:
  • бесперебойное электропитание (без разрыва синусоиды питающего напряжения) потребителей, подключенных через ИБП; Полностью регулируемое выходное напряжение.
  • выходное напряжение чистой синусоидальной формы;
  • высокий КПД;
  • совместимость с дизель-генераторами с коэффициентом запаса мощности не более 1,3;
  • максимальную защиту против всплесков, скачков, перепадов и отключений напряжения;
  • возможность параллельного включения нескольких ИБП;
  • возможность автономной поддержки нагрузки в течение 20мин.;
  • возможность бесперебойного переключения нагрузки на питание от внешней электросети через встроенный и внешний байпас;
  • гальваническую развязку входных и выходных цепей;
  • дистанционный мониторинг и управление параметрами ИБП.

2.2. Структура решения

В зависимости от требований к электропитанию потребителей, используются разные варианты построения схем электропитания. Рассмотрим несколько вариантов.

2.2.1. Использование на объекте схемы гарантированного электропитания

Если на объекте в качестве резервного источника электропитания используется только дизель-генераторная установка, то такая схема называется схемой гарантированного электропитания, а потребители, получающие электропитание от ДГУ в случае исчезновения напряжения основной питающей сети - потребители гарантированного электропитания.

Такую схему целесообразно использовать в случаях частого исчезновения напряжения основной питающей сети и отсутствии на объекте потребителей I категории особой группы, которым необходимо для нормального функционирования электропитание без разрыва синусоиды питающего напряжения.

2.2.2. Использование на объекте схемы бесперебойного питания

Если на объекте в качестве резервного источника электропитания используется только источник бесперебойного электропитания, то такая схема называется схемой бесперебойного электропитания, а потребители, получающие электропитание от ИБП в случае исчезновения напряжения основной питающей сети - потребители бесперебойного электропитания.

Такую схему целесообразно использовать в случаях нечастого и кратковременного исчезновения напряжения основной питающей сети и при наличии на объекте потребителей I категории особой группы.

2.2.3. Использование на объекте схемы бесперебойного и гарантированного питания совмещённо

Если на объекте в качестве резервного источника электропитания используется и дизель-генераторная установка, и источник бесперебойного электропитания, то такая схема называется схемой повышенной надёжности с использованием бесперебойного и гарантированного электропитания.

В случае исчезновения напряжения основной питающей сети - на ДГУ поступает команда на его запуск. В момент запуска ДГУ (5-10сек.) потребители гарантированного электропитания, кратковременно остаются без напряжения. Электроснабжение потребителей гарантированного электропитания восстанавливается при выходе ДГУ на номинальную частоту и напряжение.

Во время запуска ДГУ, ИБП переходит на аккумуляторные батареи, и питание потребителей бесперебойного электропитания осуществляется от батарей ИБП столько времени, сколько необходимо для запуска дизель-генераторной установки. Таким образом, питание потребителей бесперебойного электропитания осуществляется без разрыва синусоиды питающего напряжения.

При восстановлении питающего напряжения внешней энергосети при переключении потребителей от ДГУ к внешней питающей сети, потребители гарантированного электропитания кратковременно остаются без напряжения. Таким образом, питание потребителей переходит в нормальный режим. Дизель-генераторная установка, после полного останова, переходит в дежурный режим.

Питание от ДГУ возможно в течение промежутка времени, определяемого запасом топлива в топливном баке ДГУ и удельным расходом топлива (величина этого параметра зависит от нагрузки), а также возможностью дозаправки ДГУ во время работы. Если энергоснабжение от основного ввода не восстановится до окончания ресурса топлива в штатном топливном баке, то блок автоматики ДГУ остановит дизель-генератор.

Такую схему целесообразно использовать для объектов, требующих повышенной надежности электропитания.

3. Создание системы бесперебойного и гарантированного электроснабжения на объекте

3.1. Необходимые условия для создания на объекте схемы гарантированного электропитания

    При создании на объекте схемы гарантированного электропитания необходимо учесть следующие требования:
  • дизель-генераторные установки должны иметь показатель наработки на отказ не менее 40000 часов;
  • эксплуатация ДГУ с загрузкой по мощности менее 50% длительное время не рекомендуется, а с загрузкой менее 30% - ведет к отказу поставщика от гарантийных обязательств на оборудование;
  • время экстренного старта и приема нагрузки из режима ожидания в горячем резерве не более 9 сек.
  • обеспечить возможность проведения ремонтных работ и регламентного обслуживания дизель-генераторной установки без нарушения нормальной работы системы электроснабжения;
  • обеспечить дистанционный контроль работы ДГУ;
  • исключить возможность параллельной работы ДГУ с внешней системой электроснабжения;

3.2. Необходимые условия для создания на объекте схемы бесперебойного электропитания

  • одиночный отказ любого элемента СБП не должен приводить к полной потере работоспособности системы;
  • средний срок службы СБП не менее 10 лет;
  • избегание перегрузок нейтральных кабелей входных электросетей и оборудования трансформаторных подстанций;
  • работа длительное время в режиме отключения внешней энергосети и обеспечение питания ответственных потребителей от ИБП;
  • обеспечение возможности проведения ремонтных работ и регламентного обслуживания ИБП без нарушения нормальной работы системы электроснабжения;
  • обеспечение дистанционный контроль работы и ИБП;
  • выполнение корректного завершения технологических процессов при исчезновении внешнего питания и истечения ресурса автономии аккумуляторных батарей.

3.3. Необходимые условия для создания на объекте схемы бесперебойного и гарантированного электропитания совмещённо

    При создании на объекте схемы бесперебойного электропитания необходимо учесть следующие требования:
  • класс ИБП - on-line, как единственный защищающий нагрузку от всех существующих неполадок в электросети;
  • мощность ИБП выбирается, исходя из мощности нагрузки;
  • ИБП обязательном порядке комплектуется аккумуляторными батареями. В общем случае, время резервирования аккумуляторов выбирается в диапазоне 5-10 минут;
  • для снижения нелинейных искажений токов, вносимых ИБП в питающую сеть, применяются ИБП с выпрямителями на IGBT - транзисторах с 12-пульсными выпрямителями или с активными выпрямителями;
  • желательно подбирать ИБП с системой плавного перехода ИБП на питание с батареи на сеть;
  • мощности ДГУ и ИБП подбираются в соотношении: ДГУ/ИБП= 1,3;
  • ДГУ должна комплектоваться автоматическим регулятором выходного напряжения и электронным регулятором скорости приводного двигателя.

Как показывает опыт "НИЦ", выбор звеньев системы бесперебойного и гарантированного электропитания с учетом приведённых выше требований обеспечивает согласованную и устойчивую совместную работу ИБП и ДГУ. Дополнительное преимущество этой схемы над предыдущими двумя - практически неограниченное время работы в автономном режиме, т.е., полная независимость электроснабжения ответственной нагрузки (потребителей I категории и потребителей I категории особой группы) от неполадок основной сети.

4. Схемы решений

4.1. Схема гарантированного электропитания

4.2. Схема бесперебойного электропитания

4.3. Схема бесперебойного и гарантированного электропитания

5. Производители оборудования для реализации схемы гарантированного и бесперебойного электропитания

5.1. Общие принципы при выборе производителя

    При выборе производителя для поставки оборудования по созданию системы гарантированного электропитания на объектах, компания "НИЦ" опирается на следующие показатели:
  • соответствие оборудования российским стандартам;
  • гарантия качества и надежность работы;
  • приемлемые сроки поставки;
  • грамотная техническая поддержка от производителя.

5.2. Производители дизель-генераторных установок и источников бесперебойного электропитания

Имея немалый опыт по созданию систем гарантированного электропитания, наша компания отдаёт предпочтение таким производителям, как: F.G.Wilson, Gesan, Cummins, SDMO.

При создании на объектах систем бесперебойного электропитания чаще всего наша компания использует ИБП фирмы APC , также, довольно часто используются ИБП Powerware, реже - Libert.

Как это ни странно, но спрос на устройства, обеспечивающие бесперебойную работу компьютерных систем, растет не только в странах с так называемой нестабильной экономикой, но и на Западе. Правда, причины этого роста несколько различны. Если в высокоразвитых странах на первый план выходит поддержание стабильности параметров электропитания, то, скажем, у нас — это наличие его самого как такового. Вопросы же обоснованного выбора и правильного построения систем гарантированного электропитания (СГЭ) в соответствующих документах до сих пор во многом остаются нерешенными.

Прежде чем переходить к рекомендациям, в основе которых лежит практика, рассмотрим последовательно базовые понятия, связанные с электрообеспечением ЛВС, такие, как качество электроэнергии, надежность, система гарантированного электроснабжения, сети электроснабжения и их виды.

Надежность электроснабжения

Понятие надежности в электротехнике можно трактовать как свойство объекта сохранять в установленных пределах в процессе эксплуатации значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортировки. Согласно ныне действующим правилам в отношении обеспечения надежности электроснабжения электроприемники разделяются на три категории и особую группу.

К электроприемникам категории I принадлежат устройства, перерыв в электроснабжении которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего оборудования, нарушение сложного технологического процесса или функционирования особо важных объектов. Их электроснабжение должно осуществляться от двух взаимно резервирующих источников питания (ИП) с допустимым перерывом на время автоматического восстановления питания.

Из категории I выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства. Для их электроснабжения должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего ИП. Его роль могут выполнять бензиновые (БЭС), дизельные (ДЭС) электростанции или другие энергогенерирующие источники.

К электроприемникам II и III категорий относятся менее ответственные установки, и их рассмотрение не представляет для нас интереса.

Следует обратить внимание, что автоматическое включение резерва (АВР), позволяющее за время 3—30 с восстановить питание электроприемников категории I и даже особой группы, приводит только к возобновлению электроснабжения, но не к продолжению их нормального функционирования. Таким образом, обусловленные действующими руководствами категории надежности, не решают проблемы обеспечения ЛВС электроэнергией нужного качества. Поэтому предлагается ввести дополнительную группу, назвав ее "критическая группа электроприемников категории I к надежности электроснабжения". При этом будем исходить из того, что устройства, относящиеся к критической группе, должны выдерживать перерыв питания до 20 мс.

Эти электроприемники по режимам работы можно разделить на два вида: устройства с нормальным режимом работы и с особым. Первые должны обеспечиваться защитой от неполадок питания в течение рабочей смены (суток) или времени, необходимого для завершения соответствующего технологического цикла; вторые — защитой от неполадок питания 24 часа в сутки и 365 дней в году. К последним принадлежат устройства, обеспечивающие непрерывный технологический процесс в реальном режиме времени, когда прерывание недопустимо, или те электроприемники, сбой в работе которых приводит к потере трудно восстанавливаемой информации или к большим финансовым убыткам.

Для электроснабжения потребителей критической группы рекомендуется использовать СГЭ в составе агрегата бесперебойного питания (АБП) и автономного источника питания в виде ДЭС или БЭС. В здании следует предусматривать электропомещения с установкой в них вводных и распределительных щитов (электрощитовой), помещения для АБП и для ДЭС. При этом питающие и распределительные линии силовых, осветительных и компьютерных сетей должны быть разнесены с обязательным формированием автономной сети электроснабжения потребителей ЛВС.

Система гарантированного электроснабжения

Определимсистему гарантированного электроснабжениякакнабор устройств и схемных решений, предназначенных для обеспечения бесперебойным электропитанием необходимого качества электроприемников критической группы во всех режимах работы сети (нормальном, аварийном или режиме профилактического обслуживания входящих в систему узлов и блоков). Заметим, что СГЭ является важнейшей и неотъемлемой составной частью общей системы электропитания здания и обеспечивает необходимую надежность всей цепи. В состав СГЭ обычно входят средства АВР, силовые коммутационные устройства электрощитовой, выполненная по особой схеме распределительная сеть, АБП, ДЭС, автономная электрическая сеть, а также устройства молниезащиты и заземления.

Сети электроснабжения и их виды

В настоящее время существует несколько способов выполнения сетей электроснабжения для питания электроприемников критической группы.

Сеть общего назначения (обычная сеть электропитания здания) — одно- или трехфазная распределительная сеть, в которой все электроприемники питаются от одного магистрального щитка или линии с нулевым (защитным) проводником, присоединенным к основному контуру заземления здания. По нашему мнению, описанная организация сети недопустима для проектирования ЛВС, однако в связи с тем что она не противоречит действующим нормативным документам, такие сети продолжают появляться в решениях большинства проектных институтов.

Выделенная сеть ЛВС (выполняется без дополнительного монтажа распределительной сети) — схема, когда электроприемники ЛВС подключаются на одну выделенную фазу трехфазного магистрального щитка или линии, а все остальные электроприемники — к двум другим фазам. Для защиты электроприемников ЛВС АБП обычно размещают между магистральным щитком и выделенной фазой. Такой способ организации сети — это только первый шаг к разделению электропитания ЛВС для обеспечения возможности подключения АБП — и не больше. Описанная организация распределительной сети для крупной ЛВС не рекомендуется.

Разделенная сеть ЛВС (дополнительно смонтированная сеть при реконструкции) — способ построения, при котором электроприемники ЛВС получают питание по одно- или трехфазной радиально-магистральной сети, отделенной от остальной сети общего назначения. Вводные фидеры разделенной сети подключаются непосредственно к главному распределительному (вводному) устройству здания. Для защиты электроприемников ЛВС АБП обычно размещают у распределительных щитков в узлах разделенной сети. Такой способ организации сети питания электроприемников ЛВС может быть вполне оправдан, а его стоимость практически соответствует стоимости автономной сети.

Автономная сеть электроснабжения ЛВС (дополнительно смонтированная при реконструкции или новом строительстве) — схема монтажа, при которой электроприемники ЛВС получают питание по радиально-магистральной пятипроводной сети, гальванически отделенной от сети общего назначения. Обычно она выполняется на базе АБП, имеющего выходной изолирующий трансформатор со вторичной обмоткой типа звезда, нейтраль которой соединяется со специальным контуром технологического заземления с сопротивлением R =< 0,5 Ом.

Из перечисленных выше четырех видов сетей только автономная сеть электроснабжения ЛВС позволяет обеспечить питание электроприемников электрической энергией необходимого качества за счет устранения блуждающих, импульсных и прочих токов в нейтральных проводниках.

Схемотехнические решения СГЭ

В настоящее время практически реализуются две основные схемы СГЭ: распределенная и централизованно-смешанная. Для всех вновь строящихся или реконструируемых объектов наиболее подходящим решением является схема централизованно-смешанной защиты ЛВС. В случаях, если реконструкция системы электроснабжения не выполняется, или при значительных технических сложностях реализации схемы централизованно-смешанной защиты как временное решение допустимо выполнение схемы распределенной защиты ЛВС.

Рассмотрим область применения, преимущества и недостатки схемы распределенной защиты. Она может быть рекомендована для ЛВС небольшого масштаба (20—40 рабочих мест) в пределах одного или нескольких этажей здания. При этом используются АБП архитектуры on-line со стандартным набором аккумуляторных батарей (на 20—30 минут поддержания электроснабжения при нагрузке 100%) и общим автономным резервным источником электропитания с автоматическим запуском при исчезновении питания городской электросети и устройством АВР. Рекомендуемая схема разделенная сеть.

К преимуществам распределенной схемы защиты можно отнести:

  • простоту установки и наращивания;
  • рациональное планирование средств на приобретение АБП;
  • возможность маневра при распределении АБП;
  • отсутствие требований по специальной подготовке персонала.
  • относительно высокую стоимость защиты одного рабочего места;
  • невысокий уровень качества защиты и низкие сервисные возможности;
  • необходимость при выборе АБП закладывать запас мощности для пусковых токов оборудования;
  • сложность централизованного управления;
  • отсутствие гибкости в использовании энергии аккумуляторных батарей всех АБП;
  • уязвимость оборудования вследствие доступности АБП.

Выполнение схемы централизованно-смешанной защиты ЛВС возможно, по крайней мере, в двух вариантах. В первом — защита всего электронного оборудования осуществляется с помощью центрального мощного АБП архитектуры on-line со стандартным набором аккумуляторных батарей на 15—30 минут поддержания 100%-ной нагрузки и автономным резервным источником электропитания с автоматическим запуском и устройством АВР. При этом электроприемники ЛВС критической группы с нормальным режимом работы дополнительно защищаются расположенными рядом менее мощными АБП. Рекомендуемая суммарная мощность источников 15—80 кВ*А, а в отдельных случаях — и более. Способ выполнения — автономная сеть.

Данный вариант характеризуется следующими преимуществами:

  • все оборудование ЛВС постоянно подключено к источнику высокостабильного напряжения;
  • перенапряжения, электромагнитные помехи и импульсы напряжения во внешних сетях не оказывают воздействия на оборудование ЛВС;
  • при необходимости осуществляется автономная работа от ДЭС, продолжительность которой ограничивается только емкостью топливного бака;
  • предоставляются широкие возможности по использованию энергии центральной аккумуляторной батареи (значительное увеличение времени работы от АБП наиболее ответственных приемников при отключении в аварийной ситуации менее ответственных).

Во втором варианте централизованная защита всего электронного оборудования выполняется с помощью параллельного включения нескольких (линейки) АБП архитектуры on-line и автономного резервного источника электропитания с автоматическим запуском при исчезновении питания от городской электросети и АВР. Рекомендуется при наличии электроприемников критической группы с особым режимом работы. При этом такие устройства дополнительно защищены расположенными рядом менее мощными АБП. Рекомендуемая суммарная мощность нагрузки — от 80 кВ*А и выше, способ выполнения — автономная сеть.

К преимуществам второго варианта следует отнести:

  • постоянное подключение оборудования ЛВС к источнику высокостабильного напряжения;
  • отсутствие воздействия на оборудование ЛВС перенапряжения, электромагнитных помех, импульсов напряжения во внешних сетях и внутренних сетях общего назначения;
  • повышение надежности работы системы в целом (при выходе из строя одного из АБП) за счет выполнения ремонтных работ, без прерывания электропитания в автономной сети;
  • применение системы управления параллельной работой, что дает возможность изменения суммарной мощности работающих АБП за счет включения/отключения одного или нескольких из них;
  • использование энергии центральной аккумуляторной батареи, позволяющей в аварийной ситуации отключить малоответственные электроприемники.
  • проектирование, поставка, монтаж, техническое обслуживание СГЭ необходимо выполнять комплексно, с учетом параметров всех элементов, входящих в нее, взаимосогласованных режимов работы и максимально возможной унификацией;
  • схема автономного питания устройств ЛВС АБП должна иметь выходной изолирующий трансформатор со вторичной обмоткой типа звезда, нейтраль которой соединяется со специальным контуром технологического заземляющего устройства с R =< 0,5 Ом. При этом необходимо, чтобы распределительные щитки автономной сети имели защиту от поражения электрическим током согласно IEC 439-1-85 или ГОСТ 22789—94;
  • схема централизованно-смешанной защиты СГЭ должна предусматривать шкаф байпаса (ШБ) и шкаф управления нагрузкой дизель-генератора (ШУН ДГ) для возможности выполнения ремонтных и обслуживающих работ на ДЭС и наладки его работы с АБП без перерыва подачи питания;
  • коммутационные аппараты АВР должны иметь механические блокировки от одновременности включения;
  • автономность электропитания ЛВС следует обеспечивать не только путем разделения силовых электрических сетей, но и за счет устранения связей между контурами заземления, которые могут возникать по информационным каналам;
  • информационные (воздушные) линии ЛВС, прокладываемые снаружи здания или между зданиями, должны быть защищены специальными устройствами ограничения перенапряжения.

Практический опыт работы показывает, что только автономная сеть позволяет в полном объеме обеспечить надежное и высококачественное электропитание ЛВС.

Энергетика принадлежит к числу базовых инфраструктур. И перебои в подаче электроэнергии, или же некачественное электроснабжение способны парализовать работу практически любой организации, вне зависимости от ее масштаба. В то же время в силу некоторых специфических черт российской энергетики (таких, к примеру, как использование воздушных линий электропередач или общей изношенности инфраструктуры) от проблем, связанных с некачественным электропитанием не застрахован никто. И чем чаще в новостях звучат сообщения о блэкаутах, вызванных веерными отключениями электроэнергии или повреждениями линий электропередач в результате ураганов или ледяных дождей, тем более актуальным становится вопрос: как обеспечить качественное электропитание на объекте в условиях общей нестабильности энергетики?

Все проблемы с электропитанием в общем виде можно свести к двум разновидностям:

  • Некачественное электроснабжение (скачки или колебания напряжения; импульсные скачки при перепадах энергопотребления; отклонения частоты и т.д.).
  • Отключения электричества.

Соответственно, задачи сводится к тому, чтобы

  • обеспечить качество электрической энергии, стабилизировав параметры электропитания;
  • при отключении электричества иметь возможность корректно завершить работу информационных систем;
  • обеспечить оборудованию, которое должно работать непрерывно, возможность продолжать работу до восстановления электропитания (иными словами, бесконечно долго).

Специалистами компании «Рубатех» эти задачи решаются следующим образом:

При некачественном электроснабжении на входе в собственную электросеть устанавливаются фильтры высокочастотных помех и ограничители перенапряжений, что позволяет защитить оборудование от внешних помех. При скачках напряжения устанавливаются стабилизаторы питания различных типов (в зависимости от характера помех). Это не позволяет ликвидировать все виды помех (например, плавающую частоту невозможно перегенерировать заново), но тем не менее значительно повышает качество электропитания и помогает обеспечить нормальную работу оборудования.

Корректно завершить работу информационного оборудования помогают источники бесперебойного питания (ИБП). Как правило, мощности компьютерной техники не особенно высоки, и легко поддаются подсчету, так что установка ИБП в большинстве случаев не вызывает сложности у потребителей. Основная проблема, связанная с использованием ИБП – то, что его аккумуляторы не рассчитаны на длительное время работы. В большинстве случаев ИБП обеспечивает «резерв» в 6-7 минут, позволяющий выключить оборудование, но не дающий возможности продолжить работу. Это ограничение можно «обойти», подключив к ИБП дополнительные аккумуляторы. Но такое решение как правило, оказывается финансово неоправданным, поскольку стоимость аккумулятора, позволяющего компьютеру работать в течение часа после отключения электричества, вероятнее всего, превысит стоимость ИБП.

Для сохранения в работоспособном состоянии инженерных и охранных систем (таких, как системы пожаротушения или охранно-пожарной сигнализации) могут использоваться специальные резервированные источники питания. Благодаря тому, что в охранных системах используется низковольтное оборудование, резервированные источники питания позволяют оборудованию работать от аккумулятора на протяжении нескольких часов.

Если необходимо обеспечить бесперебойную работу оборудования при длительном отсутствии электропитания (особенно это актуально для предприятий с непрерывным циклом производства), используется двухступенчатая схема. Оборудование подключается к ИБП, время работы которого позволяет запустить (автоматически или вручную) резервный генератор, который позволит оборудованию продолжить работу как минимум на протяжении нескольких часов. Параллельно происходит зарядка ИБП от генератора, что позволяет при разрядке генератора произвести переподключение оборудования к новому автономному источнику питания. Отметим, что такие двухступенчатые схемы являются самыми сложными и требуют особого профессионализма при расчете нагрузок, временных интервалов и простраивании связей ИБП с генератором.

Также при решении любой задачи, связанной с обеспечением качественного электропитания, необходимо просчитывать экономическую эффективность принимаемых мер : достаточно часто решение, которое «напрашивается», оказывается на деле не решением проблемы, а источником новых проблем. Например, оператор, предоставлявший в обслуживание складской комплекс, не подключенный к системе электроснабжения, попытался решить проблему путем установки нескольких мощных генераторов. В результате себестоимость электричества оказалась непомерно высока, и вместо прибыли сдача склада принесла серьезные убытки.