Основные свойства рентгеновского излучения. Что такое рентгеновские лучи – свойства и применение излучения

В 1895 немецкий физик Рентген , проводя опыты по прохождению тока между двумя электродами в вакууме, обнаружил, что экран, покрытый люминесцентным веществом (солью бария) светится, хотя разрядная трубка закрыта черным картонным экраном – так было открыто излучение, проникающее через непрозрачные преграды, названное Рентгеном Х-лучами. Было обнаружено, что рентгеновское излучение, невидимое для человека, поглощается в непрозрачных объектах тем сильнее, чем больше атомный номер (плотность) преграды, поэтому рентгеновские лучи легко проходят через мягкие ткани человеческого тела, но задерживаются костями скелета. Были сконструированы источники мощных рентгеновских лучей, позволяющие просвечивать металлические детали и находить в них внутренние дефекты.

Немецкий физик Лауэ предположил, что рентгеновские лучи являются таким же электромагнитным излучением, как лучи видимого света, но с меньшей длиной волны и к ним применимы все законы оптики, в том числе возможна дифракция. В оптике видимого света дифракция на элементарном уровне может быть представлена как отражение света от системы штрихов – дифракционной решетки, происходящее только под определенными углами, при этом угол отражения лучей связан с углом падения, расстоянием между штрихами дифракционной решетки и длиной волны падающего излучения. Для дифракции нужно, чтобы расстояние между штрихами было примерно равно длине волны падающего света.

Лауэ предположил, что рентгеновские лучи имеют длину волны, близкую к расстоянию между отдельными атомами в кристаллах, т.е. атомы в кристалле создают дифракционную решетку для рентгеновских лучей. Рентгеновские лучи, направленные на поверхность кристалла, отразились на фотопластинку, как предсказывалось теорией.

Любые изменения в положении атомов влияют на дифракционную картину, и, изучая дифракцию рентгеновских лучей,можно узнать расположение атомов в кристалле и изменение этого расположения при любых физических, химических и механических воздействиях на кристалл.

Сейчас рентгеноанализ используется во многих областях науки и техники, с его помощью узнали расположение атомов в существующих материалах и создали новые материалы с заданными структурой и свойствами. Последние достижения в этой области (наноматериалы, аморфные металлы, композитные материалы) создают поле деятельности для следующих научных поколений.

Возникновение и свойства рентгеновского излучения

Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 кВ).

Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1,5 раза превышает минимальную длину волны.

При увеличении напряжения рентгеновский спектр резко меняется за счет взаимодействия атомов с высокоэнергетичными электронами и квантами первичных рентгеновских лучей. Атом содержит внутренние электронные оболочки (энергетические уровни), количество которых зависит от атомного номера (обозначаются буквами K, L, М и т.д.) Электроны и первичные рентгеновские лучи выбивают электроны из одних энергетических уровней на другие. Возникает метастабильное состояние и для перехода к стабильному состоянию необходим перескок электронов в обратном направлении. Этот скачок сопровождается выделением кванта энергии и возникновением рентгеновского излучения. В отличие от рентгеновских лучей с непрерывным спектром, у этого излучения очень узкий интервал длин волн и высокая интенсивность (характеристическое излучением) (см . рис.). Количество атомов, определяющих интенсивность характеристического излучения, очень велико, например, для рентгеновской трубки с медным анодом при напряжении 1 кВ токе 15 мА за 1 с характеристическое излучение дают 10 14 –10 15 атомов. Эта величина вычисляется как отношение общей мощности рентгеновского излучения к энергии кванта рентгеновского излучения из К-оболочки (К-серия рентгеновского характеристического излучения). Общая мощность рентгеновского излучения при этом составляет всего 0,1% от потребляемой мощности, остальная часть теряется, в основном, за счет перехода в тепло.

Вследствие высокой интенсивности и узкого интервала длин волн характеристическое рентгеновское излучение является основным типом излучения, используемым в научных исследованиях и при технологическом контроле. Одновременно с лучами К-серии генерируются лучи L и М-серий, имеющих значительно большие длины волн, но применение их ограничено. K-серия имеет две составляющие с близкими длинами волн a и b , при этом интенсивность b -составляющей в 5 раз меньше, чем a . В свою очередь a -составляющая характеризуется двумя очень близкими длинами волн, интенсивность одной из которых в 2 раза больше, чем другой. Чтобы получить излучение с одной длиной волны (монохроматическое излучение), разработаны специальные методы, использующие зависимость поглощения и дифракции рентгеновских лучей от длины волны. Увеличение атомного номера элемента связано с изменением характеристик электронных оболочек, при этом чем больше атомный номер материала анода рентгеновской трубки, тем меньше длина волны К-серии. Наиболее широко применяются трубки с анодами из элементов с атомными номерами от 24 до 42 (Cr, Fe, Co, Cu, Mo) и длинами волн от 2,29 до 0,712 А (0,229 – 0,712 нм).

Кроме рентгеновской трубки, источниками рентгеновского излучения могут быть радиоактивные изотопы, одни могут непосредственно испускать рентгеновское излучение, другие испускают электроны и a -частицы, генерирующие рентгеновское излучение при бомбардировке металлических мишеней. Интенсивность рентгеновского излучения радиоактивных источников обычно значительно меньше, чем рентгеновской трубки (за исключением радиоактивного кобальта, используемого в дефектоскопии и дающего излучение очень малой длины волны – g -излучение), они малогабаритны и не требуют электроэнергии. Синхротронное рентгеновское излучение получают в ускорителях электронов, длина волны этого излучения значительно превышает получаемую в рентгеновских трубках (мягкое рентгеновское излучение), интенсивность его на несколько порядков выше интенсивности излучения рентгеновских трубок. Есть и природные источники рентгеновского излучения. Радиоактивные примеси обнаружены во многих минералах, зарегистрировано рентгеновское излучение космических объектов, в том числе и звезд.

Взаимодействие рентгеновских лучей с кристаллами

При рентгенографическом исследовании материалов с кристаллической структурой анализируют интерференционные картины, возникающие в результате рассеяния рентгеновских лучей электронами, принадлежащими атомам кристаллической решетки. Атомы считаются неподвижными, их тепловые колебания не учитываются и все электроны одного и того же атом считаются сосредоточенными в одной точке – узле кристаллической решетки.

Для вывода основных уравнений дифракции рентгеновских лучей в кристалле рассматривается интерференция лучей, рассеянных атомами, расположенными вдоль прямой в кристаллической решетке. На эти атомы под углом, косинус которого равен a 0 , падает плоская волна монохроматического рентгеновского излучения. Законы интерференции лучей, рассеянных атомами, аналогичны существующим для дифракционной решетки, рассеивающей световое излучение в видимом диапазоне длин волн. Чтобы на большом расстоянии от атомного ряда амплитуды всех колебаний складывались, необходимо и достаточно, чтобы разность хода лучей, идущих от каждой пары соседних атомов, содержала целое число длин волн. При расстоянии между атомами а это условие имеет вид:

а (a a 0) = h l ,

где a – косинус угла между атомным рядом и отклоненным лучом, h – целое число. Во всех направлениях, не удовлетворяющих этому уравнению, лучи не распространяются. Таким образом, рассеянные лучи образуют систему коаксиальных конусов, общей осью которых является атомный ряд. Следы конусов на плоскости, параллельной атомному ряду, – гиперболы, а на плоскости, перпендикулярной ряду, – круги.

При падении лучей под постоянным углом полихроматическое (белое) излучение разлагается в спектр лучей, отклоненных под фиксированными углами. Таким образом, атомный ряд является спектрографом для рентгеновского излучения.

Обобщение на двумерную (плоскую) атомную решетку, а затем на трехмерную объемную (пространственную) кристаллическую решетку дает еще два аналогичных уравнения, в которые входят углы падения и отражения рентгеновского излучения и расстояния между атомами по трем направлениям. Эти уравнения называются уравнениями Лауэ и лежат в основе рентгеноструктурного анализа.

Амплитуды лучей, отраженных от параллельных атомных плоскостей складываются и т.к. количество атомов очень велико, отраженное излучение можно зафиксировать экспериментально. Условие отражения описывается уравнением Вульфа – Брэгга2d sinq = nl , где d – расстояние между соседними атомными плоскостями, q – угол скольжения между направлением падающего луча и этими плоскостями в кристалле, l – длина волны рентгеновского излучения, n – целое число, названное порядком отражения. Угол q является углом падения по отношению именно к атомным плоскостям, которые не обязательно совпадают по направлению с поверхностью исследуемого образца.

Разработано несколько методов рентгеноструктурного анализа, использующих как излучение со сплошным спектром, так и монохроматическое излучение. Исследуемый объект при этом может быть неподвижным или вращающимся, может состоять из одного кристалла (монокристалл) или многих (поликристалл), дифрагированное излучение может регистрироваться с помощью плоской или цилиндрической рентгеновской пленки или перемещающегося по окружности детектора рентгеновского излучения, однако во всех случаях при проведении эксперимента и интерпретации результатов используется уравнение Вульфа – Брэгга.

Рентгеноанализ в науке и технике

С открытием дифракции рентгеновских лучей в распоряжении исследователей оказался метод, позволяющий без микроскопа изучить расположение отдельных атомов и изменения этого расположения при внешних воздействиях.

Основное применение рентгеновских лучей в фундаментальной науке – структурный анализ, т.е. установление пространственного расположения отдельных атомов в кристалле. Для этого выращивают монокристаллы и проводят рентгеноанализ, изучая как расположения, так и интенсивности рефлексов. Сейчас определены структуры не только металлов, но и сложных органических веществ, в которых элементарные ячейки содержат тысячи атомов.

В минералогии методом ретгеноанализа определены структуры тысяч минералов и созданы экспресс-методы анализа минерального сырья.

У металлов сравнительно простая кристаллическая структура и рентгеновский метод позволяет исследовать ее изменения при различных технологических обработках и создавать физические основы новых технологий.

По расположению линий на рентгенограммах определяют фазовый состав сплавов, по их ширине – число, величину и форму кристаллов, по распределению интенсивности в дифракционном конусе – ориентировку кристаллов (текстуру).

С помощью этих методик изучают процессы при пластической деформации, включающие в себя дробление кристаллов, возникновение внутренних напряжений и несовершенств кристаллической структуры (дислокаций). При нагреве деформированных материалов изучают снятие напряжений и рост кристаллов (рекристаллизация).

При рентгеноанализе сплавов определяют состав и концентрацию твердых растворов. При возникновении твердого раствора меняются межатомные расстояния и, следовательно, расстояния между атомными плоскостями. Эти изменения невелики, поэтому разработаны специальные прецизионные методы измерения периодов кристаллической решетки с точностью на два порядка превышающей точность измерения при обычных рентгеновских методах исследования. Сочетание прецизионных измерений периодов кристаллической решетки и фазового анализа позволяют построить границы фазовых областей на диаграмме состояния. Рентгеновским методом можно также обнаружить промежуточные состояния между твердыми растворами и химическими соединениями – упорядоченные твердые растворы, в которых атомы примеси расположены не хаотически, как в твердых растворах, и в то же время не с трехмерной упорядоченностью, как в химических соединениях. На рентгенограммах упорядоченных твердых растворов есть дополнительные линии, расшифровка рентгенограмм показывает, что атомы примеси занимают определенные места в кристаллической решетке, например, в вершинах куба.

При закалке сплава, не испытывающего фазовых превращений, может возникать пересыщенный твердый раствор и при дальнейшем нагреве или даже выдержке при комнатной температуре твердый раствор распадается с выделением частиц химического соединения. Это эффект старениея и проявляется он на рентгенограммах как изменение положения и ширины линий. Исследование старения особенно важно для сплавов цветных металлов, например, старение превращает мягкий закаленный алюминиевый сплав в прочный конструкционный материал дуралюмин.

Наибольшее технологическое значение имеют рентгеновские исследования термической обработки стали. При закалке (быстром охлаждении) стали происходит бездиффузионный фазовый переход аустенит – мартенсит, что приводит к изменению структуры от кубической к тетрагональной, т.е. элементарная ячейка приобретает форму прямоугольной призмы. На рентгенограммах это проявляется как расширение линий и разделение некоторых линий на две. Причины этого эффекта – не только изменение кристаллической структуры, но и возникновение больших внутренних напряжений из-за термодинамической неравновесности мартенситной структуры и резкого охлаждения. При отпуске (нагреве закаленной стали) линии на рентгенограммах сужаются, это связано с возвращением к равновесной структуре.

В последние годы большое значение приобрели рентгеновские исследования обработки материалов концентрированными потоками энергии (лучами лазера, ударными волнами, нейтронами, электронными импульсами), они потребовали новых методик и дали новые рентгеновские эффекты. Например, при действии лучей лазера на металлы нагрев и охлаждение происходят настолько быстро, что в металле при охлаждении кристаллы успевают вырасти только до размеров в несколько элементарных ячеек (нанокристаллы) или вообще не успевают возникнуть. Такой металл после охлаждения выглядит как обычный, но не дает четких линий на рентгенограмме, а отраженные рентгеновские лучи распределены по всему интервалу углов скольжения.

После нейтронного облучения на рентгенограммах возникают дополнительные пятна (диффузные максимумы). Радиоактивный распад также вызывает специфические рентгеновские эффекты, связанные с изменением структуры, а также с тем, что исследуемый образец сам становится источником рентгеновского излучения.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ

(ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ)

НОВОТРОИЦКИЙ ФИЛИАЛ

Кафедра ОЕНД

КУРСОВАЯ РАБОТА

Дисциплина: Физика

Тема: РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

Студент: Недорезова Н.А.

Группа: ЭиУ-2004-25, № З. К.: 04Н036

Проверил: Ожегова С.М.

Введение

Глава 1. Открытие рентгеновского излучения

1.1 Биография Рентгена Вильгельма Конрада

1.2 Открытие рентгеновского излучения

Глава 2. Рентгеновское излучение

2.1 Источники рентгеновских лучей

2.2 Свойства рентгеновских лучей

2.3 Регистрация рентгеновских лучей

2.4 Применение рентгеновских лучей

Глава 3. Применение рентгеновского излучения в металлургии

3.1 Анализ несовершенств кристаллической структуры

3.2 Спектральный анализ

Заключение

Список используемых источников

Приложения

Введение

Редкий человек не проходил через рентгеновский кабинет. Снимки, сделанные в рентгеновских лучах, знакомы каждому. В 1995 году исполнилось сто лет этому открытию. Трудно представить, какой огромный интерес вызвало оно век назад. В руках человека оказался аппарат, с помощью которого удалось увидеть невидимое.

Это невидимое излучение, способное проникать, хотя и в разной степени, во все вещества, представляющее собой электромагнитное излучение с длиной волны порядка 10 -8 см назвали рентгеновским излучением, в честь открывшего его Вильгельма Рентгена.

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и менее прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах, в химии для анализа соединений и в физике для исследования структуры кристаллов.

За открытием Рентгена последовали эксперименты других исследователей, обнаруживших много новых свойств и возможностей применения этого излучения. Большой вклад внесли М. Лауэ, В. Фридрих и П. Книппинг, продемонстрировавшие в 1912 дифракцию рентгеновского излучения при прохождении его через кристалл; У. Кулидж, который в 1913 изобрел высоковакуумную рентгеновскую трубку с подогретым катодом; Г. Мозли, установивший в 1913 зависимость между длиной волны излучения и атомным номером элемента; Г. и Л. Брэгги, получившие в 1915 Нобелевскую премию за разработку основ рентгеноструктурного анализа.

Целью данной курсовой работы является изучение явления рентгеновского излучения, истории открытия, свойств и выявление сферы его применения.

Глава 1. Открытие рентгеновского излучения

1.1 Биография Рентгена Вильгельма Конрада

Вильгельм Конрад Рентген родился 17 марта 1845 г. в пограничной с Голландией области Германии, в городе Ленепе. Он получил техническое образование в Цюрихе в той самой Высшей технической школе (политехникуме), в которой позже учился Эйнштейн. Увлечение физикой заставило его после окончания школы в 1866 г. продолжить физическое образование.

Защитив в 1868 г. диссертацию на степень доктора философии, он работал ассистентом на кафедре физики сначала в Цюрихе, потом в Гисене, а затем в Страсбурге (1874-1879) у Кундта. Здесь Рентген прошел хорошую экспериментальную школу и стал первоклассным экспериментатором. Часть важных исследований Рентген выполнил со своим учеником, одним из основателей советской физики А.Ф. Иоффе.

Научные исследования относятся к электромагнетизму, физике кристаллов, оптике, молекулярной физике.

В 1895 открыл излучение с длиной волны, более короткой, нежели длина волны ультрафиолетовых лучей (X-лучи), названное в дальнейшем рентгеновскими лучами, и исследовал их свойства: способность отражаться, поглощаться, ионизировать воздух и т.д. Предложил правильную конструкцию трубки для получения Х-лучей - наклонный платиновый антикатод и вогнутый катод: первый сделал фотоснимки при помощи рентгеновских лучей. Открыл в 1885 магнитное поле диэлектрика, движущегося в электрическом поле (так называемый "рентгенов ток”). Его опыт наглядно показал, что магнитное поле создается подвижными зарядами, и имел важное значение для создания X. Лоренцем электронной теории. Значительное число работ Рентгена посвящено исследованию свойств жидкостей, газов, кристаллов, электромагнитных явлений, открыл взаимосвязь электрических и оптических явлений в кристаллах. За открытие лучей, носящих его имя, Рентгену в 1901 первому среди физиков была присуждена Нобелевская премия.

С 1900 г. и до последних дней жизни (умер он 10 февраля 1923 г.) он работал в Мюнхенском университете.

1.2 Открытие рентгеновского излучения

Конец XIX в. ознаменовался повышенным интересом к явлениям прохождения электричества через газы. Еще Фарадей серьезно занимался этими явлениями, описал разнообразные формы разряда, открыл темное пространство в светящемся столбе разреженного газа. Фарадеево темное пространство отделяет синеватое, катодное свечение от розоватого, анодного.

Дальнейшее увеличение разрежения газа существенно изменяет характер свечения. Математик Плюкер (1801-1868) обнаружил в 1859г., при достаточно сильном разрежении слабо голубоватый пучок лучей, исходящий из катода, доходящий до анода и заставляющий светиться стекло трубки. Ученик Плюкера Гитторф (1824-1914) в 1869 г. продолжил исследования учителя и показал, что на флюоресцирующей поверхности трубки появляется отчетливая тень, если между катодом и этой поверхностью поместить твердое тело.

Гольдштейн (1850-1931), изучая свойства лучей, назвал их катодными лучами (1876 г.). Через три года Вильям Крукс (1832-1919) доказал материальную природу катодных лучей и назвал их "лучистой материей”-веществом, находящимся в особом четвертом состоянии. Его доказательства были убедительны и наглядны. Опыты с "трубкой Крукса” демонстрировались позже во всех физических кабинетах. Отклонение катодного пучка магнитным полем в трубке Крукса стало классической школьной демонстрацией.

Однако опыты по электрическому отклонению катодных лучей не были столь убедительными. Герц не обнаружил такого отклонения и пришел к выводу, что катодный луч - это колебательный процесс в эфире. Ученик Герца Ф. Ленард, экспериментируя с катодными лучами, в 1893 г. показал, что они проходят через окошечко, закрытое алюминиевой фольгой, и вызывают свечение в пространстве за окошечком. Явлению прохождения катодных лучей через тонкие металлические тела Герц посвятил свою последнюю статью, опубликованную в 1892 г. Она начиналась словами:

"Катодные лучи отличаются от света существенным образом в отношении способности проникать через твердые тела”. Описывая результаты опытов по прохождению катодных лучей через золотые, серебряные, платиновые, алюминиевые и т.д. листочки, Герц отмечает, что он не наблюдал особых отличий в явлениях. Лучи проходят через листочки не прямолинейно, а дифракционно рассеиваются. Природа катодных лучей все еще оставалась неясной.

Вот с такими трубками Крукса, Ленарда и других и экспериментировал Вюрцбургский профессор Вильгельм Конрад Рентген в конце 1895 г. Однажды по окончании опыта, закрыв трубку чехлом из черного картона, выключив свет, но не выключив еще индуктор, питающий трубку, он заметил свечение экрана из синеродистого бария, находящегося вблизи трубки. Пораженный этим обстоятельством, Рентген начал экспериментировать с экраном. В своем первом сообщении "О новом роде лучей”, датированном 28 декабря 1895 г., он писал об этих первых опытах: "Кусок бумаги, покрытой платиносинеродистым барием, при приближении к трубке, закрытой достаточно плотно прилегающим к ней чехлом из тонкого черного картона, при каждом разряде вспыхивает ярким светом: начинает флюоресцировать. Флюоресценция видна при достаточном затемнении и не зависит от того, подносим ли бумагу стороной, покрытой синеродистым барием или не покрытой синеродистым барием. Флюоресценция заметна еще на расстоянии двух метров от трубки”.

Тщательное исследование показало Рентгену, "что черный картон, не прозрачный ни для видимых и ультрафиолетовых лучей солнца, ни для лучей электрической дуги, пронизывается каким-то агентом, вызывающим флюоресценцию”. Рентген исследовал проникающую способность этого "агента”, который он для краткости назвал "Х-лучи”, для различных веществ. Он обнаружил, что лучи свободно проходят через бумагу, дерево, эбонит, тонкие слои металла, но сильно задерживаются свинцом.

Затем он описывает сенсационный опыт:

"Если держать между разрядной трубкой и экраном руку, то видны темные тени костей в слабых очертаниях тени самой руки”. Это было первое рентгеноскопическое исследование человеческого тела. Рентген получил и первые рентгеновские снимки, приложив их к своей руке.

Эти снимки произвели огромное впечатление; открытие еще не было завершено, а уже начала свой путь рентгенодиагностика. "Моя лаборатория была наводнена врачами, приводившими пациентов, подозревавших, что они имеют иголки в разных частях тела”, - писал английский физик Шустер.

Уже после первых опытов Рентген твердо установил, что Х-лучи отличаются от катодных, они не несут заряда и не отклоняются магнитным полем, однако возбуждаются катодными лучами.". Х-лучи не идентичны с катодными лучами, но возбуждаются ими в стеклянных стенках разрядной трубки”, - писал Рентген.

Он установил также, что они возбуждаются не только в стекле, но и в металлах.

Упомянув о гипотезе Герца - Ленарда, что катодные лучи "есть явление, происходящее в эфире”, Рентген указывает, что "нечто подобное мы можем сказать и о наших лучах”. Однако ему не удалось обнаружить волновые свойства лучей, они "ведут себя иначе, чем известные до сих пор ультрафиолетовые, видимые, инфракрасные лучи”. По своим химическим и люминесцентным действиям они, по мнению Рентгена, сходны с ультрафиолетовыми лучами. В первом сообщении он высказал оставленное потом предположение, что они могут быть продольными волнами в эфире.

Открытие Рентгена вызвало огромный интерес в научном мире. Его опыты были повторены почти во всех лабораториях мира. В Москве их повторил П.Н. Лебедев. В Петербурге изобретатель радио А.С. Попов экспериментировал с X-лучами, демонстрировал их на публичных лекциях, получая различные рентгенограммы. В Кембридже Д.Д. Томсон немедленно применил ионизирующее действие рентгеновских лучей для изучения прохождения электричества через газы. Его исследования привели к открытию электрона.

Глава 2. Рентгеновское излучение

Рентгеновское излучение - электромагнитное ионизирующее излучение, занимающее спектральную область между гамма - и ультрафиолетовым излучением в пределах длин волн от 10 -4 до 10 3 (от 10 -12 до 10 -5 см).Р. л. с длиной волны λ < 2 условно называются жёсткими, с λ > 2 - мягкими.

2.1 Источники рентгеновских лучей

Наиболее распространённый источник рентгеновских лучей - рентгеновская трубка - электровакуумный прибор , служащий источником рентгеновского излучения. Такое излучение возникает при торможении электронов, испускаемых катодом, и их ударе об анод (антикатод); при этом энергия электронов, ускоренных сильным электрическим полем в пространстве между анодом и катодом, частично преобразуется в энергию рентгеновского излучения. Излучение рентгеновской трубки представляет собой наложение тормозного рентгеновского излучения на характеристическое излучение вещества анода. Рентгеновские трубки различают: по способу получения потока электронов - с термоэмиссионным (подогревным) катодом, автоэмиссионным (острийным) катодом, катодом, подвергаемым бомбардировке положительными ионами и с радиоактивным (β) источником электронов; по способу вакуумирования - отпаянные, разборные; по времени излучения - непрерывного действия, импульсные; по типу охлаждения анода - с водяным, масляным, воздушным, радиационным охлаждением; по размерам фокуса (области излучения на аноде) - макрофокусные, острофокусные и микрофокусные; по его форме - кольцевой, круглой, линейчатой формы; по способу фокусировки электронов на анод - с электростатической, магнитной, электромагнитной фокусировкой.

Рентгеновские трубки применяют в рентгеновском структурном анализе (Приложение 1), рентгеновском спектральном анализе, дефектоскопии (Приложение 1), рентгенодиагностике (Приложение 1), рентгенотерапии , рентгеновской микроскопии и микрорентгенографии. Наибольшее применение во всех областях находят отпаянные рентгеновские трубки с термоэмиссионным катодом, водоохлаждаемым анодом, электростатической системой фокусировки электронов (Приложение 2). Термоэмиссионный катод рентгеновских трубок обычно представляет собой спираль или прямую нить из вольфрамовой проволоки, накаливаемую электрическим током. Рабочий участок анода - металлическая зеркальная поверхность - расположен перпендикулярно или под некоторым углом к потоку электронов. Для получения сплошного спектра рентгеновского излучения высоких энергий и интенсивности используют аноды из Au, W; в структурном анализе пользуются рентгеновские трубки с анодами из Ti, Cr, Fe, Co, Ni, Cu, Mo, Ag.

Основные характеристики рентгеновских трубок - предельно допустимое ускоряющее напряжение (1-500 кВ), электронный ток (0,01 мА - 1А), удельная мощность, рассеиваемая анодом (10-10 4 вт/мм 2), общая потребляемая мощность (0,002 вт - 60 квт) и размеры фокуса (1 мкм - 10 мм). КПД рентгеновской трубки составляет 0,1-3%.

В качестве источников рентгеновских лучей могут служить также некоторые радиоактивные изотопы : одни из них непосредственно испускают рентгеновские лучи, ядерные излучения других (электроны или λ-частицы) бомбардируют металлическую мишень, которая испускает рентгеновские лучи. Интенсивность рентгеновского излучения изотопных источников на несколько порядков меньше интенсивности излучения рентгеновской трубки, но габариты, вес и стоимость изотопных источников несравненно меньше, чем установки с рентгеновской трубкой.

Источниками мягких рентгеновских лучей с λ порядка десятков и сотен могут служить синхротроны и накопители электронов с энергиями в несколько Гэв. По интенсивности рентгеновское излучение синхротронов превосходит в указанной области спектра излучение рентгеновской трубки на 2-3 порядка.

Естественные источники рентгеновских лучей - Солнце и другие космические объекты.

2.2 Свойства рентгеновских лучей

В зависимости от механизма возникновения рентгеновских лучей их спектры могут быть непрерывными (тормозными) или линейчатыми (характеристическими). Непрерывный рентгеновский спектр испускают быстрые заряженные частицы в результате их торможения при взаимодействии с атомами мишени; этот спектр достигает значительной интенсивности лишь при бомбардировке мишени электронами. Интенсивность тормозных рентгеновских лучей распределена по всем частотам до высокочастотной границы 0 , на которой энергия фотонов h 0 (h - постоянная Планка ) равна энергии eV бомбардирующих электронов (е - заряд электрона, V - разность потенциалов ускоряющего поля, пройденная ими). Этой частоте соответствует коротковолновая граница спектра 0 = hc/eV (с - скорость света).

Линейчатое излучение возникает после ионизации атома с выбрасыванием электрона одной из его внутренних оболочек. Такая ионизация может быть результатом столкновения атома с быстрой частицей, например электроном (первичные рентгеновские лучи), или поглощения атомом фотона (флуоресцентные рентгеновские лучи). Ионизованный атом оказывается в начальном квантовом состоянии на одном из высоких уровней энергии и через 10 -16 -10 -15 сек переходит в конечное состояние с меньшей энергией. При этом избыток энергии атом может испустить в виде фотона определённой частоты. Частоты линий спектра такого излучения характерны для атомов каждого элемента, поэтому линейчатый рентгеновский спектр называется характеристическим. Зависимость частоты линий этого спектра от атомного номера Z определяется законом Мозли.

Закон Мозли , закон, связывающий частоту спектральных линий характеристического рентгеновского излучения химического элемента с его порядковым номером. Экспериментально установлен Г. Мозли в 1913. Согласно закону Мозли, корень квадратный из частоты  спектральной линии характеристического излучения элемента есть линейная функция его порядкового номера Z:

где R - Ридберга постоянная , S n - постоянная экранирования, n - главное квантовое число. На диаграмме Мозли (Приложение 3) зависимость от Z представляет собой ряд прямых (К-, L-, М - и т.д. серии, соответствующие значениям n = 1, 2, 3,.).

Закон Мозли явился неопровержимым доказательством правильности размещения элементов в периодической системе элементов Д.И. Менделеева и содействовал выяснению физического смысла Z.

В соответствии с законом Мозли, рентгеновские характеристические спектры не обнаруживают периодических закономерностей, присущих оптическим спектрам. Это указывает на то, что проявляющиеся в характеристических рентгеновских спектрах внутренние электронные оболочки атомов всех элементов имеют аналогичное строение.

Более поздние эксперименты выявили некоторые отклонения от линейной зависимости для переходных групп элементов, связанные с изменением порядка заполнения внешних электронных оболочек, а также для тяжёлых атомов, появляющиеся в результате релятивистских эффектов (условно объясняемых тем, что скорости внутренних сравнимы со скоростью света).

В зависимости от ряда факторов - от числа нуклонов в ядре (изотонический сдвиг), состояния внешних электронных оболочек (химический сдвиг) и пр. - положение спектральных линий на диаграмме Мозли может несколько изменяться. Изучение этих сдвигов позволяет получать детальные сведения об атоме.

Тормозное рентгеновское излучение, испускаемое очень тонкими мишенями, полностью поляризовано вблизи 0 ; с уменьшением 0 степень поляризации падает. Характеристическое излучение, как правило, не поляризовано.

При взаимодействии рентгеновских лучей с веществом может происходить фотоэффект , сопровождающее его поглощение рентгеновских лучей и их рассеяние, фотоэффект наблюдается в том случае, когда атом, поглощая рентгеновский фотон, выбрасывает один из своих внутренних электронов, после чего может совершить либо излучательный переход, испустив фотон характеристического излучения, либо выбросить второй электрон при безызлучательном переходе (оже-электрон). Под действием рентгеновских лучей на неметаллические кристаллы (например, на каменную соль) в некоторых узлах атомной решётки появляются ионы с дополнительным положительным зарядом, а вблизи них оказываются избыточные электроны. Такие нарушения структуры кристаллов, называемые рентгеновскими экситонами , являются центрами окраски и исчезают лишь при значительном повышении температуры.

При прохождении рентгеновских лучей через слой вещества толщиной х их начальная интенсивность I 0 уменьшается до величины I = I 0 e - μ x где μ - коэффициент ослабления. Ослабление I происходит за счёт двух процессов: поглощения рентгеновских фотонов веществом и изменения их направления при рассеянии. В длинноволновой области спектра преобладает поглощение рентгеновских лучей, в коротковолновой - их рассеяние. Степень поглощения быстро растет с увеличением Z и λ. Например, жёсткие рентгеновские лучи свободно проникают через слой воздуха ~ 10 см; алюминиевая пластинка в 3 см толщиной ослабляет рентгеновские лучи с λ = 0,027 вдвое; мягкие рентгеновские лучи значительно поглощаются в воздухе и их использование и исследование возможно лишь в вакууме или в слабо поглощающем газе (например, Не). При поглощении рентгеновских лучей атомы вещества ионизуются.

Влияние рентгеновских лучей на живые организмы может быть полезным и вредным в зависимости от вызванной ими ионизации в тканях. Поскольку поглощение рентгеновских лучей зависит от λ, интенсивность их не может служить мерой биологического действия рентгеновских лучей. Количественным учётом действия рентгеновских лучей на вещество занимается рентгенометрия , единицей его измерения служит рентген

Рассеяние рентгеновских лучей в области больших Z и λ происходит в основном без изменения λ и носит название когерентного рассеяния, а в области малых Z и λ, как правило, возрастает (некогерентное рассеяние). Известно 2 вида некогерентного рассеяния рентгеновских лучей - комптоновское и комбинационное. При комптоновском рассеянии, носящем характер неупругого корпускулярного рассеяния, за счёт частично потерянной рентгеновским фотоном энергии из оболочки атома вылетает электрон отдачи. При этом уменьшается энергия фотона и изменяется его направление; изменение λ зависит от угла рассеяния. При комбинационном рассеянии рентгеновского фотона высокой энергии на лёгком атоме небольшая часть его энергии тратится на ионизацию атома и меняется направление движения фотона. Изменение таких фотонов не зависит от угла рассеяния.

Показатель преломления n для рентгеновских лучей отличается от 1 на очень малую величину δ = 1-n ≈ 10 -6 -10 -5 . Фазовая скорость рентгеновских лучей в среде больше скорости света в вакууме. Отклонение рентгеновских лучей при переходе из одной среды в другую очень мало (несколько угловых минут). При падении рентгеновских лучей из вакуума на поверхность тела под очень малым углом происходит их полное внешнее отражение.

2.3 Регистрация рентгеновских лучей

Глаз человека к рентгеновским лучам не чувствителен. Рентгеновские

лучи регистрируют с помощью специальной рентгеновской фотоплёнки, содержащей повышенное количество Ag, Br. В области λ<0,5 чувствительность этих плёнок быстро падает и может быть искусственно повышена плотно прижатым к плёнке флуоресцирующим экраном. В области λ> 5 чувствительность обычной позитивной фотоплёнки достаточно велика, а её зёрна значительно меньше зёрен рентгеновской плёнки, что повышает разрешение. При λ порядка десятков и сотен рентгеновские лучи действуют только на тончайший поверхностный слой фотоэмульсии; для повышения чувствительности плёнки её сенсибилизируют люминесцирующими маслами. В рентгенодиагностике и дефектоскопии для регистрации рентгеновских лучей иногда применяют электрофотографию (электрорентгенографию).

Рентгеновские лучи больших интенсивностей можно регистрировать с помощью ионизационной камеры (Приложение 4), рентгеновские лучи средних и малых интенсивностей при λ < 3 - сцинтилляционным счётчиком с кристаллом NaI (Tl) (Приложение 5), при 0,5 < λ < 5 - счётчиком Гейгера - Мюллера (Приложение 6) и отпаянным пропорциональным счётчиком (Приложение 7), при 1 < λ < 100 - проточным пропорциональным счётчиком, при λ < 120 - полупроводниковым детектором (Приложение 8). В области очень больших λ (от десятков до 1000) для регистрации рентгеновских лучей могут быть использованы вторично-электронные умножители открытого типа с различными фотокатодами на входе.

2.4 Применение рентгеновских лучей

Наиболее широкое применение рентгеновские лучи нашли в медицине для рентгенодиагностики и рентгенотерапии . Важное значение для многих отраслей техники имеет рентгеновская дефектоскопия , например для обнаружения внутренних пороков отливок (раковин, включений шлака), трещин в рельсах, дефектов сварных швов.

Рентгеновский структурный анализ позволяет установить пространственное расположение атомов в кристаллической решётке минералов и соединений, в неорганических и органических молекулах. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, т.е. выполнен фазовый анализ. Многочисленными применениями Р. л. для изучения свойств твёрдых тел занимается рентгенография материалов .

Рентгеновская микроскопия позволяет, например, получить изображение клетки, микроорганизма, увидеть их внутреннее строение. Рентгеновская спектроскопия по рентгеновским спектрам изучает распределение плотности электронных состояний по энергиям в различных веществах, исследует природу химической связи, находит эффективный заряд ионов в твёрдых телах и молекулах. Спектральный анализ рентгеновский по положению и интенсивности линий характеристического спектра позволяет установить качественный и количественный состав вещества и служит для экспрессного неразрушающего контроля состава материалов на металлургических и цементных заводах, обогатительных фабриках. При автоматизации этих предприятий применяются в качестве датчиков состава вещества рентгеновские спектрометры и квантометры.

Рентгеновские лучи, приходящие из космоса, несут информацию о химическом составе космических тел и о физических процессах, происходящих в космосе. Исследованием космических рентгеновских лучей занимается рентгеновская астрономия . Мощные рентгеновские лучи используют в радиационной химии для стимулирования некоторых реакций, полимеризации материалов, крекинга органических веществ. Рентгеновских лучей применяют также для обнаружения старинной живописи, скрытой под слоем поздней росписи, в пищевой промышленности для выявления инородных предметов, случайно попавших в пищевые продукты, в криминалистике, археологии и др.

Глава 3. Применение рентгеновского излучения в металлургии

Одна из основных задач рентгеноструктурного анализа - определение вещественного или фазового состава материала. Рентгеноструктурный метод является прямым и характеризуется высокой достоверностью, экспрессностью и относительной дешевизной. Метод не требует большого количества вещества, анализ можно проводить без разрушения детали. Области применения качественного фазового анализа очень разнообразны и для научно-исследовательских работ, и для контроля в производстве. Можно проверять состав исходных материалов металлургического производства, продуктов синтеза, передела, результат фазовых изменений при термической и химико-термической обработке, вести анализ разных покрытий, тонких пленок и т.д.

Каждая фаза, обладая своей кристаллической структурой, характеризуется определенным, присущим только данной фазе набором дискретных значений межплоскостных расстояний d/n от максимального и ниже. Как следует из уравнения Вульфа-Брэгга, каждому значению межплоскостного расстояния соответствует линия на рентгенограмме от поликристаллического образца под определенным углом θ (при заданном значении длины волны λ). Таким образом, определенному набору межплоскостных расстояний для каждой фазы на рентгенограмме будет соответствовать определенная система линий (дифракционных максимумов). Относительная интенсивность этих линий на рентгенограмме зависит, прежде всего, от структуры фазы. Следовательно, определив местоположение линий на рентгенограмме (ее угол θ) и зная длину волны излучения, на котором была снята рентгенограмма, можно определить значения межплоскостных расстояний d/n по формуле Вульфа-Брэгга:

/n = λ/ (2sin θ). (1)

Определив набор d/n для исследуемого материала и сопоставив его с известными заранее данными d/n для чистых веществ, их различных соединений, можно установить, какую фазу составляет данный материал. Следует подчеркнуть, что определяются именно фазы, а не химический состав, но последний иногда можно вывести, если существуют дополнительные данные об элементном составе той или иной фазы. Задача качественного фазового анализа значительно облегчается, если известен химический состав исследуемого материала, потому что тогда можно сделать предварительные предположения о возможных в данном случае фазах.

Главное для фазового анализа - точно измерить d/n и интенсивность линии. Хотя этого в принципе проще добиться с использованием дифрактометра, фотометод для качественного анализа имеет некоторые преимущества прежде всего в отношении чувствительности (возможность заметить присутствие в образце малого количества фазы), а также простоты экспериментальной техники.

Расчет d/n по рентгенограмме проводится с помощью уравнения Вульфа-Брэгга.

В качестве значения λ в этом уравнении обычно используют λ α ср К-серии:

λ α ср = (2λ α1 + λ α2) /3 (2)

Иногда используют линию К α1 . Определение углов дифракции θ для всех линий рентгенограмм позволяет рассчитать d/n по уравнению (1) и отделить β-линии (если не было фильтра для (β-лучей).

3.1 Анализ несовершенств кристаллической структуры

Все реальные монокристаллические и тем более поликристаллические материалы содержат те или иные структурные несовершенства (точечные дефекты, дислокации, различного типа границы раздела, микро - и макронапряжения), оказывающие очень сильное влияние на все структурно-чувствительные свойства и процессы.

Структурные несовершенства вызывают разные по характеру нарушения кристаллической решетки и, как следствие, разного типа изменения дифракционной картины: изменение межатомных и межплоскостных расстояний вызывает смещение дифракционных максимумов, микронапряжения и дисперсность субструктуры приводят к уширению дифракционных максимумов, микроискажения решетки - к изменению интенсивности этих максимумов, наличие дислокаций вызывает аномальные явления при прохождении рентгеновских лучей и, следовательно, локальные неоднородности контраста на рентгеновских топограммах и др.

Вследствие этого рентгеноструктурный анализ является одним из наиболее информативных методов изучения структурных несовершенств, их типа и концентрации, характера распределения.

Традиционный прямой метод рентгеновской дифракции, который реализуется на стационарных дифрактометрах, в силу их конструктивных особенностей позволяет осуществить количественное определение напряжений и деформаций только на малых образцах, вырезанных из деталей или объектов.

Поэтому в настоящее время происходит переход от стационарных к портативным малогабаритным рентгеновским дифрактометрам, которые обеспечивают оценку напряжений в материале деталей или объектов без разрушения на стадиях их изготовления и эксплуатации.

Портативные рентгеновские дифрактометры серии ДРП * 1 позволяют проводить контроль остаточных и действующих напряжений в крупногабаритных деталях, изделиях и конструкциях без разрушения

Программа в среде Windows позволяет в реальном времени не только определять напряжения методом "sin 2 ψ", но и следить за изменением фазового состава и текстуры. Линейнокоординатный детектор обеспечивает одновременную регистрацию в углах дифракции 2θ = 43°. малогабаритные рентгеновские трубки типа "Лиса" с высокой светимостью и малой мощностью (5 Вт) обеспечивают радиологическую безопасность прибора, при которой на расстоянии 25 см от облучаемого участка уровень радиации равен уровню природного фона. Приборы серии ДРП находят применение при определении напряжений на различных стадиях обработки металлов давлением, при резании, шлифовании, термообработке, сварке, поверхностном упрочении с целью оптимизации этих технологических операций. Контроль за падением уровня наведенных остаточных напряжений сжатия в особо ответственных изделиях и конструкциях при их эксплуатации позволяет вывести изделие из эксплуатации до его разрушения, предотвратив возможные аварии и катастрофы.

3.2 Спектральный анализ

Наряду с определением атомной кристаллической структуры и фазового состава материала для его полной характеристики обязательным является определение его химического состава.

Все чаще для этих целей на практике используют различные, так называемые инструментальные методы спектрального анализа. Каждый из них имеет свои преимущества и области применения.

Одним из важных требований во многих случаях является то, чтобы используемый метод обеспечил сохранность анализируемого объекта; именно такие методы анализа рассматриваются в данном разделе. Следующим критерием, по которому были выбраны методы анализа, описанные в настоящем разделе, является их локальность.

Метод флюоресцентного рентгеноспектрального анализа основан на проникновении в анализируемый объект довольно жесткого рентгеновского излучения (от рентгеновской трубки), проникающего в слой толщиной порядка нескольких микрометров. Возникающее при этом в объекте характеристическое рентгеновское излучение позволяет получить усредненные данные о его химическом составе.

Для определения элементного состава вещества можно использовать анализ спектра характеристического рентгеновского излучения пробы, помещенной на анод рентгеновской трубки и подвергнутой бомбардировке электронами - эмиссионный метод, или анализ спектра вторичного (флюоресцентного) рентгеновского излучения пробы, подвергнутой облучению жесткими рентгеновскими лучами от рентгеновской трубки или другого источника - флюоресцентный метод.

Недостатком эмиссионного метода является, во-первых, необходимость помещения пробы на анод рентгеновской трубки с последующей откачкой вакуумными насосами; очевидно, этот метод непригоден для легкоплавких и летучих веществ. Второй недостаток связан с тем, что даже тугоплавкие объекты под действием бомбардировки электронами повреждаются. Флюоресцентный метод свободен от этих недостатков и поэтому имеет гораздо более широкое применение. Преимуществом флюоресцентного метода является также отсутствие тормозного излучения, это способствует улучшению чувствительности анализа. Сравнение измеренных длин волн с таблицами спектральных линий химических элементов составляет основу качественного анализа, а относительные значения интенсивности спектральных линий разных элементов, образующих вещество пробы, составляет основу количественного анализа. Из рассмотрения механизма возбуждения характеристического рентгеновского излучения ясно, что излучения той или иной серии (К или L, М и т.д.) возникают одновременно, причем соотношения интенсивностей линий в пределах серии всегда постоянно. Поэтому наличие того или иного элемента устанавливается не по отдельным линиям, а по серии линий в целом (кроме самых слабых, с учетом содержания данного элемента). Для сравнительно легких элементов используют анализ линий K-серии, для тяжелых - линий L-ceрии; в разных условиях (в зависимости от используемой аппаратуры и от анализируемых элементов) могут быть наиболее удобными разные области характеристического спектра.

Главные особенности рентгеноспектрального анализа следующие.

Простота рентгеновских характеристических спектров даже для тяжелых элементов (по сравнению с оптическими спектрами), что упрощает выполнение анализа (малое число линий; подобие в их взаимном расположении; с увеличением порядкового номера происходит закономерное смещение спектра в коротковолновую область, сравнительная простота проведения количественного анализа).

Независимость длин волн от состояния атомов анализируемого элемента (свободное или в химическом соединении). Это обусловлено тем, что возникновение характеристического рентгеновского излучения связано с возбуждением внутренних электронных уровней, которые в большинстве случаев практически не изменяются от степени ионизации атомов.

Возможность разделения в анализе редкоземельных и некоторых других элементов, которые имеют малые различия спектров в оптическом диапазоне из-за подобия электронного строения внешних оболочек и очень мало различаются по своим химическим свойствам.

Метод рентгеновской флюоресцентной спектроскопии является "неразрушающим", поэтому он имеет преимущество перед методом обычной оптической спектроскопии при анализе тонких образцов - тонкий металлический лист, фольга и т.д.

Особенно широкое применение на металлургических предприятиях приобрели рентгеновские флюоресцентные спектрометры и среди них многоканальные спектрометры или квантометры, обеспечивающие экспрессный количественный анализ элементов (от Na или Mg до U) с ошибкой менее 1 % от определяемой величины, порог чувствительности 10 -3 …10 -4 %.

рентгеновское излучение луч

Способы определения спектрального состава рентгеновского излучения

Спектрометры разделяются на два типа: кристалл-дифракционные и бескристальные.

Разложение рентгеновских лучей в спектр с помощью естественной дифракционной решетки - кристалла - по существу аналогично получению спектра лучей обычного света с помощью искусственной дифракционной решетки в виде периодических штрихов на стекле. Условие образования дифракционного максимума можно записать как условие "отражения" от системы параллельных атомных плоскостей, разделенных расстоянием d hkl .

При проведении качественного анализа можно судить о присутствии того или иного элемента в пробе по одной линии - обычно самой интенсивной линии спектральной серии, подходящей для данного кристалл-анализатора. Разрешение кристалл-дифракционных спектрометров достаточно для разделения характеристических линий даже соседних по положению в периодической таблице элементов. Однако надо учитывать еще наложение разных линий разных элементов, а также наложение отражений разного порядка. Это обстоятельство должно учитываться при выборе аналитических линий. Вместе с тем надо использовать возможности улучшения разрешающей способности прибора.

Заключение

Таким образом, рентгеновские лучи представляют собой невидимое электромагнитное излучение с длиной волны 10 5 - 10 2 нм. Рентгеновские лучи могут проникать через некоторые непрозрачные для видимого света материалы. Испускаются они при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчастый спектр). Источниками рентгеновского излучения являются: рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). Приемники - фотопленка, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в рентгеноструктурном анализе, медицине, дефектоскопии, рентгеновском спектральном анализе и т.п.

Рассмотрев положительные стороны открытия В. Рентгена, необходимо отметить и его вредное биологическое действие. Оказалось, что рентгеновское излучение может вызвать что-то вроде сильного солнечного ожога (эритему), сопровождающееся, однако, более глубоким и стойким повреждением кожи. Появлявшиеся язвы нередко переходят в рак. Во многих случаях приходилось ампутировать пальцы или руки. Случались и летальные исходы.

Было установлено, что поражения кожи можно избежать, уменьшив время и дозу облучения, применяя экранировку (например, свинец) и средства дистанционного управления. Но постепенно выявились и другие, более долговременные последствия рентгеновского облучения, которые были затем подтверждены и изучены на подопытных животных. К эффектам, обусловленным действием рентгеновского излучения, а также других ионизирующих излучений (таких, как гамма-излучение, испускаемое радиоактивными материалами) относятся:

) временные изменения в составе крови после относительно небольшого избыточного облучения;

) необратимые изменения в составе крови (гемолитическая анемия) после длительного избыточного облучения;

) рост заболеваемости раком (включая лейкемию);

) более быстрое старение и ранняя смерть;

) возникновение катаракт.

Биологического воздействия рентгеновского излучения на человеческий организм определяется уровнем дозы облучения, а также тем, какой именно орган тела подвергался облучению.

Накопление знаний о воздействии рентгеновского излучения на организм человека привело к разработке национальных и международных стандартов на допустимые дозы облучения, опубликованных в различных справочных изданиях.

Чтобы избежать вредного воздействия рентгеновского излучения применяют методы контроля:

) наличие адекватного оборудования,

) контроль за соблюдением правил техники безопасности,

) правильное использование оборудования.

Список используемых источников

1) Блохин М.А., Физика рентгеновских лучей, 2 изд., М., 1957;

) Блохин М.А., Методы рентгено-спектральных исследований, М., 1959;

) Рентгеновские лучи. Сб. под ред. М.А. Блохина, пер. с нем. и англ., М., 1960;

) Хараджа Ф., Общий курс рентгенотехники, 3 изд., М. - Л., 1966;

) Миркин Л.И., Справочник по рентгено-структурному анализу поликристаллов, М., 1961;

) Вайнштейн Э.Е., Кахана М.М., Справочные таблицы по рентгеновской спектроскопии, М., 1953.

) Рентгенографический и элктронно-оптический анализ. Горелик С.С., Скаков Ю.А., Расторгуев Л. Н.: Учеб. Пособие для вузов. - 4-е изд. Доп. И перераб. - М.: "МИСиС", 2002. - 360 с.

Приложения

Приложение 1

Общий вид рентгеновских трубок



Приложение 2

Схема рентгеновской трубки для структурного анализа

Схема рентгеновской трубки для структурного анализа: 1 - металлический анодный стакан (обычно заземляется); 2 - окна из бериллия для выхода рентгеновского излучения; 3 - термоэмиссионный катод; 4 - стеклянная колба, изолирующая анодную часть трубки от катодной; 5 - выводы катода, к которым подводится напряжение накала, а также высокое (относительно анода) напряжение; 6 - электростатическая система фокусировки электронов; 7 - анод (антикатод); 8 - патрубки для ввода и вывода проточной воды, охлаждающей анодный стакан.

Приложение 3

Диаграмма Мозли

Диаграмма Мозли для К-, L - и М-серий характеристического рентгеновского излучения. По оси абсцисс отложен порядковый номер элемента Z, по оси ординат - (с - скорость света).

Приложение 4

Ионизационная камера.

Рис.1. Сечение цилиндрической ионизационной камеры: 1 - цилиндрический корпус камеры, служащий отрицательным электродом; 2 - цилиндрический стержень, служащий положительным электродом; 3 - изоляторы.

Рис. 2. Схема включения токовой ионизационной камеры: V - напряжение на электродах камеры; G - гальванометр, измеряющий ионизационный ток.

Рис. 3. Вольтамперная характеристика ионизационной камеры.

Рис. 4. Схема включения импульсной ионизационной камеры: С - ёмкость собирающего электрода; R - сопротивление.

Приложение 5

Сцинтилляционный счётчик.

Схема сцинтилляционного счётчика: кванты света (фотоны)"выбивают" электроны с фотокатода; двигаясь от динода к диноду, электронная лавина размножается.

Приложение 6

Счётчик Гейгера - Мюллера.

Рис. 1. Схема стеклянного счётчика Гейгера - Мюллера: 1 - герметически запаянная стеклянная трубка; 2 - катод (тонкий слой меди на трубке из нержавеющей стали); 3 - вывод катода; 4 - анод (тонкая натянутая нить).

Рис. 2. Схема включения счётчика Гейгера - Мюллера.

Рис. 3. Счётная характеристика счётчика Гейгера - Мюллера.

Приложение 7

Пропорциональный счетчик.

Схема пропорционального счетчика: а - область дрейфа электронов; б - область газового усиления.

Приложение 8

Полупроводниковые детекторы

Полупроводниковые детекторы; штриховкой выделена чувствительная область; n - область полупроводника с электронной проводимостью, р - с дырочной, i - с собственной проводимостями; а - кремниевый поверхностно-барьерный детектор; б - дрейфовый германий-литиевый планарный детектор; в - германий-литиевый коаксиальный детектор.

Рентгеновское излучение (синоним рентгеновские лучи) - это с широким диапазоном длин волн (от 8·10 -6 до 10 -12 см). Рентгеновское излучение возникает при торможении заряженных частиц, чаще всего электронов, в электрическом поле атомов вещества. Образующиеся при этом кванты имеют различную энергию и образуют непрерывный спектр. Максимальная энергия квантов в таком спектре равна энергии налетающих электронов. В (см.) максимальная энергия квантов рентгеновского излучения, выраженная в килоэлектрон-вольтах, численно равна величине приложенного к трубке напряжения, выраженного в киловольтах. При прохождении через вещество рентгеновское излучение взаимодействует с электронами его атомов. Для квантов рентгеновского излучения с энергией до 100 кэв наиболее характерным видом взаимодействия является фотоэффект. В результате такого взаимодействия энергия кванта полностью расходуется на вырывание электрона из атомной оболочки и сообщения ему кинетической энергии. С ростом энергии кванта рентгеновского излучения вероятность фотоэффекта уменьшается и преобладающим становится процесс рассеяния квантов на свободных электронах - так называемый комптон-эффект. В результате такого взаимодействия также образуется вторичный электрон и, кроме того, вылетает квант с энергией меньшей, чем энергия первичного кванта. Если энергия кванта рентгеновского излучения превышает один мегаэлектрон-вольт, может иметь место так называемый эффект образования пар, при котором образуются электрон и позитрон (см. ). Следовательно, при прохождении через вещество происходит уменьшение энергии рентгеновского излучения, т. е. уменьшение его интенсивности. Поскольку при этом с большей вероятностью происходит поглощение квантов низкой энергии, то имеет место обогащение рентгеновского излучения квантами более высокой энергии. Это свойство рентгеновского излучения используют для увеличения средней энергии квантов, т. е. для увеличения его жесткости. Достигается увеличение жесткости рентгеновского излучения использованием специальных фильтров (см. ). Рентгеновское излучение применяют для рентгенодиагностики (см. ) и (см.). См. также Излучения ионизирующие.

Рентгеновское излучение (синоним: рентгеновские лучи, рентгеновы лучи) - квантовое электромагнитное излучение с длиной волны от 250 до 0,025 А (или квантов анергии от 5·10 -2 до 5·10 2 кэв). В 1895 г. открыто В. К. Рентгеном. Смежную с рентгеновским излучением спектральную область электромагнитного излучения, кванты энергии которого превышают 500 кэв, называют гамма-излучением (см.); излучение, кванты энергии которого ниже значений 0,05 кэв, составляет ультрафиолетовое излучение (см.).

Таким образом, представляя относительно небольшую часть обширного спектра электромагнитных излучений, в который входят и радиоволны и видимый свет, рентгеновское излучение, как всякое электромагнитное излучение, распространяется со скоростью света (в пустоте около 300 тыс. км/сек) и характеризуется длиной волны λ (расстояние, на которое излучение распространяется за один период колебания). Рентгеновское излучение обладает также рядом других волновых свойств (преломление, интерференция, дифракция), однако наблюдать их значительно сложнее, чем у более длинноволнового излучения: видимого света, радиоволн.

Спектры рентгеновского излучения: а1 - сплошной тормозной спектр при 310 кв; а - сплошной тормозной спектр при 250 кв, а1 - спектр, фильтрованный 1 мм Cu, а2 - спектр, фильтрованный 2 мм Cu, б - К-серия линии вольфрама.

Для генерирования рентгеновского излучения применяют рентгеновские трубки (см.), в которых излучение возникает при взаимодействии быстрых электронов с атомами вещества анода. Различают рентгеновские излучения двух видов: тормозное и характеристическое. Тормозное рентгеновское излучение, имеющее сплошной спектр, подобно обычному белому свету. Распределение интенсивности в зависимости от длины волны (рис.) представляется кривой с максимумом; в сторону длинных волн кривая спадает полого, а в сторону коротких - круто и обрывается при определенной длине волны (λ0), называемой коротковолновой границей сплошного спектра. Величина λ0 обратно пропорциональна напряжению на трубке. Тормозное излучение возникает при взаимодействии быстрых электронов с ядрами атомов. Интенсивность тормозного излучения прямо пропорциональна силе анодного тока, квадрату напряжения на трубке и атомному номеру (Z) вещества анода.

Если энергия ускоренных в рентгеновской трубке электронов превосходит критическую для вещества анода величину (эта энергия определяется критическим для этого вещества напряжением на трубке Vкр), то возникает характеристическое излучение. Характеристический спектр - линейчатый, его спектральные линии образуют серии, обозначаемые буквами К, L, М, N.

Серия К - самая коротковолновая, серия L - более длинноволновая, серии М и N наблюдаются только у тяжелых элементов (Vкр вольфрама для К-серии - 69,3 кв, для L-серии - 12,1 кв). Характеристическое излучение возникает следующим образом. Быстрые электроны выбивают атомные электроны из внутренних оболочек. Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних, менее связанных оболочек заполняют освободившиеся во внутренних оболочках места, и излучаются фотоны характеристического излучения с энергией, равной разности энергий атома в возбужденном и основном состоянии. Эта разность (а следовательно, и энергия фотона) имеет определенное значение, характерное для каждого элемента. Это явление лежит в основе рентгеноспектрального анализа элементов. На рисунке виден линейчатый спектр вольфрама на фоне сплошного спектра тормозного излучения.

Энергия ускоренных в рентгеновской трубке электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается), лишь незначительная часть (около 1% при напряжении, близком к 100 кв) превращается в энергию тормозного излучения.

Применение рентгеновского излучения в медицине основано на законах поглощения рентгеновых лучей веществом. Поглощение рентгеновского излучения совершенно не зависит от оптических свойств вещества поглотителя. Бесцветное и прозрачное свинцовое стекло, используемое для защиты персонала рентгеновских кабинетов, практически полностью поглощает рентгеновское излучение. Напротив, лист бумаги, не прозрачный для света, не ослабляет рентгеновского излучения.

Интенсивность однородного (т. е. определенной длины волны) пучка рентгеновского излучения при прохождении через слой поглотителя уменьшается по экспоненциальному закону (е-х), где е - основание натуральных логарифмов (2,718), а показатель экспоненты х равен произведению массового коэффициента ослабления (μ/р) см 2 /г на толщину поглотителя в г/см 2 (здесь р - плотность вещества в г/см 3). Ослабление рентгеновского излучения происходит как за счет рассеяния, так и за счет поглощения. Соответственно массовый коэффициент ослабления является суммой массовых коэффициентов поглощения и рассеяния. Массовый коэффициент поглощения резко возрастает с увеличением атомного номера (Z) поглотителя (пропорционально Z3 или Z5) и с увеличением длины волны (пропорционально λ3). Указанная зависимость от длины волны наблюдается в пределах полос поглощения, на границах которых коэффициент обнаруживает скачки.

Массовый коэффициент рассеяния возрастает с увеличением атомного номера вещества. При λ≥0,ЗÅ коэффициент рассеяния от длины волны не зависит, при λ<0,ЗÅ он уменьшается с уменьшением λ.

Уменьшение коэффициентов поглощения и рассеяния с уменьшением длины волны обусловливает возрастание проникающей способности рентгеновского излучения. Массовый коэффициент поглощения для костей [поглощение в основном обусловлено Са 3 (РO 4) 2 ] почти в 70 раз больше, чем для мягких тканей, где поглощение в основном обусловлено водой. Это объясняет, почему на рентгенограммах так резко выделяется тень костей на фоне мягких тканей.

Распространение неоднородного пучка рентгеновского излучения через любую среду наряду с уменьшением интенсивности сопровождается изменением спектрального состава, изменением качества излучения: длинноволновая часть спектра поглощается в большей степени, чем коротковолновая, излучение становится более однородным. Отфильтровывание длинноволновой части спектра позволяет при рентгенотерапии очагов, глубоко расположенных в теле человека, улучшить соотношение между глубинной и поверхностной дозами (см. Рентгеновские фильтры). Для характеристики качества неоднородного пучка рентгеновых лучей используется понятие «слой половинного ослабления (Л)» - слой вещества, ослабляющий излучение наполовину. Толщина этого слоя зависит от напряжения на трубке, толщины и материала фильтра. Для измерения слоев половинного ослабления используют целлофан (до энергии 12 кэв), алюминий (20-100 кэв), медь (60-300 кэв), свинец и медь (>300 кэв). Для рентгеновых лучей, генерируемых при напряжениях 80-120 кв, 1 мм меди по фильтрующей способности эквивалентен 26 мм алюминия, 1 мм свинца - 50,9 мм алюминия.

Поглощение и рассеяние рентгеновского излучения обусловлено его корпускулярными свойствами; рентгеновское излучение взаимодействует с атомами как поток корпускул (частиц) - фотонов, каждый из которых имеет определенную энергию (обратно пропорциональную длине волны рентгеновского излучения). Интервал энергий рентгеновских фотонов 0,05-500 кэв.

Поглощение рентгеновского излучения обусловлено фотоэлектрическим эффектом: поглощение фотона электронной оболочкой сопровождается вырыванием электрона. Атом возбуждается и, возвращаясь в основное состояние, испускает характеристическое излучение. Вылетающий фотоэлектрон уносит всю энергию фотона (за вычетом энергии связи электрона в атоме).

Рассеяние рентгеновского излучения обусловлено электронами рассеивающей среды. Различают классическое рассеяние (длина волны излучения не меняется, но меняется направление распространения) и рассеяние с изменением длины волны - комптон-эффект (длина волны рассеянного излучения больше, чем падающего). В последнем случае фотон ведет себя как движущийся шарик, а рассеяние фотонов происходит, по образному выражению Комнтона, наподобие игры на бильярде фотонами и электронами: сталкиваясь с электроном, фотон передает ему часть своей энергии и рассеивается, обладая уже меньшей энергией (соответственно длина волны рассеянного излучения увеличивается), электрон вылетает из атома с энергией отдачи (эти электроны называют комптон-электронами, или электронами отдачи). Поглощение энергии рентгеновского излучения происходит при образовании вторичных электронов (комптон - и фотоэлектронов) и передаче им энергии. Энергия рентгеновского излучения, переданная единице массы вещества, определяет поглощенную дозу рентгеновского излучения. Единица этой дозы 1 рад соответствует 100 эрг/г. За счет поглощенной энергии в веществе поглотителя протекает ряд вторичных процессов, имеющих важное значение для дозиметрии рентгеновского излучения, так как именно на них основываются методы измерения рентгеновского излучения. (см. Дозиметрия).

Все газы и многие жидкости, полупроводники и диэлектрики под действием рентгеновского излучения увеличивают электрическую проводимость. Проводимость обнаруживают лучшие изоляционные материалы: парафин, слюда, резина, янтарь. Изменение проводимости обусловлено ионизацией среды, т. е. разделением нейтральных молекул на положительные и отрицательные ионы (ионизацию производят вторичные электроны). Ионизация в воздухе используется для определения экспозиционной дозы рентгеновского излучения (дозы в воздухе), которая измеряется в рентгенах (см. Дозы ионизирующих излучений). При дозе в 1 р поглощенная доза в воздухе равна 0,88 рад.

Под действием рентгеновского излучения в результате возбуждения молекул вещества (и при рекомбинации ионов) возбуждается во многих случаях видимое свечение вещества. При больших интенсивностях рентгеновского излучения наблюдается видимое свечение воздуха, бумаги, парафина и т. п. (исключение составляют металлы). Наибольший выход видимого свечения дают такие кристаллические люминофоры, как Zn·CdS·Ag-фосфор и другие, применяемые для экранов при рентгеноскопии.

Под действием рентгеновского излучения в веществе могут проходить также различные химические процессы: разложение галоидных соединений серебра (фотографический эффект, используемый при рентгенографии), разложение воды и водных растворов перекиси водорода, изменение свойств целлулоида (помутнение и выделение камфоры), парафина (помутнение и отбелка).

В результате полного преобразования вся поглощенная химически инертным веществом энергия рентгеновское излучение превращается в теплоту. Измерение очень малых количеств теплоты требует высокочувствительных методов, зато является основным способом абсолютных измерений рентгеновского излучения.

Вторичные биологические эффекты от воздействия рентгеновского излучения являются основой медицинской рентгенотерапии (см.). Рентгеновские излучения, кванты которых составляют 6-16 кэв (эффективные длины волн от 2 до 5 Å), практически полностью поглощаются кожным покровом ткани человеческого тела; они называются пограничными лучами, или иногда лучами Букки (см. Букки лучи). Для глубокой рентгенотерапии применяется жесткое фильтрованное излучение с эффективными квантами энергии от 100 до 300 кэв.

Биологическое действие рентгеновского излучения должно учитываться не только при рентгенотерапии, но и при рентгенодиагностике, а также во всех других случаях контакта с рентгеновским излучением, требующих применения противолучевой защиты (см.).

В 1895 году немецкий физик В.Рентген открыл новый, не известный ранее вид электромагнитного излучения, которое в честь его первооткрывателя было названо рентгеновским. В. Рентген стал автором своего открытия в возрасте 50 лет, занимая пост ректора Вюрцбургского Университета и имея репутацию одного из лучших экспериментаторов своего времени. Одним из первых нашел техническое применение открытию Рентгена американец Эдисон. Он создал удобный демонстрационный аппарат и уже в мае 1896 года организовал в Нью-Йорке рентгеновскую выставку, на которой посетители могли разглядывать собственную руку на светящемся экране. После того, как помощник Эдисона умер от тяжелых ожогов, которые он получил при постоянных демонстрациях, изобретатель прекратил дальнейшие опыты с рентгеновскими лучами.

Рентгеновское излучение стали применять в медицине в связи с его большой проникающей способностью. Поначалу, рентгеновское излучение использовалось для исследования переломов костей и определения местоположения инородных тел в теле человека. В настоящее время существует несколько методов, основанных на рентгеновском излучении. Но у данных методов есть свои недостатки: излучение может вызвать глубокие повреждения кожи. Появлявшиеся язвы нередко переходили в рак. Во многих случаях приходилось ампутировать пальцы или руки. Рентгеноскопия (синоним просвечивание) — один из основных методов рентгенологического исследования, состоящий в получении на просвечивающем (флюоресцирующем) экране плоскостного позитивного изображения исследуемого объекта. При рентгеноскопии исследуемый находится между просвечивающим экраном и рентгеновской трубкой. На современных рентгеновских просвечивающих экранах изображение возникает в момент включения рентгеновской трубки и исчезает сразу же после ее выключения. Рентгеноскопия дает возможность изучить функцию органа - пульсацию сердца, дыхательные движения ребер, легких, диафрагмы, перистальтику органов пищеварительного тракта и т.д. Рентгеноскопия используется при лечении заболеваний желудка, желудочно-кишечного тракта, 12-перстной кишки, заболеваний печени, желчного пузыря и желчевыводящих путей. При этом медицинский зонд и манипуляторы вводят без повреждения тканей, а действия в процессе операции контролируются рентгеноскопией и видны на мониторе.
Рентгенография - метод рентгенодиагностики с регистрацией неподвижного изображения на светочувствительном материале - спец. фотоплёнке (рентгеновской плёнке) или фотобумаге с последующей фотообработкой; при цифровой рентгенографии изображение фиксируется в памяти компьютера. Выполняется на рентгенодиагностических аппаратах - стационарных, установленных в специально оборудованных рентгеновских кабинетах, или передвижных и переносных - у постели больного или в операционной. На рентгенограммах значительно отчетливей, чем на флюоресцирующем экране, отображаются элементы структур различных органов. Рентгенографию выполняют в целях выявления и профилактики различных заболеваний, основная цель её помочь врачам разных специальностей правильно и быстро поставить диагноз. Рентгеновский снимок фиксирует состояние органа или ткани лишь в момент съемки. Однако однократная рентгенограмма фиксирует только анатомические изменения в определенный момент, она дает статику процесса; посредством серии рентгенограмм, произведенных через определенные промежутки времени, можно изучить динамику процесса, то есть функциональные изменения. Томография. Слово томография можно перевести с греческого как «изображение среза». Это означает, что назначение томографии - получение послойного изображения внутренней структуры объекта исследования. Компьютерная томогарфия характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами.
Флюорография - диагностический метод, позволяющий получить изображение органов и тканей, был разработан еще в конце 20-го столетия, спустя год после того, как были обнаружены рентгеновские лучи. На снимках можно разглядеть склероз, фиброз, инородные предметы, новообразования, воспаления, имеющие развитую степень, присутствие в полостях газов и инфильтрата, абсцессы, кисты и так далее. Чаще всего производится флюорография грудной клетки, позволяющая выявить туберкулез, злокачественную опухоль в легких или груди и иные патологии.
Рентгенотерапия — это современный метод, с помощью которого производится лечение некоторых патологий суставов. Основными направлениями лечения ортопедических заболеваний данным методом, являются: Хронические. Воспалительные процессы суставов (артрит, полиартрит); Дегенеративные (остеоартроз, остеохондроз, деформирующий спондилез). Целью рентгенотерапии является угнетение жизнедеятельности клеток патологически изменённых тканей или полное их разрушение. При неопухолевых заболеваниях рентгенотерапия направлена на подавление воспалительной реакции, угнетение пролиферативных процессов, снижение болевой чувствительности и секреторной активности желёз. Следует учитывать, что наиболее чувствительны к рентгеновским лучам половые железы, кроветворные органы, лейкоциты, клетки злокачественных опухолей. Дозу облучения в каждом конкретном случае определяют индивидуально.

За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия.
Таким образом, рентгеновские лучи представляют собой невидимое электромагнитное излучение с длиной волны 105 - 102 нм. Рентгеновские лучи могут проникать через некоторые непрозрачные для видимого света материалы. Испускаются они при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчастый спектр). Источниками рентгеновского излучения являются: рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). Приемники - фотопленка, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в рентгеноструктурном анализе, медицине, дефектоскопии, рентгеновском спектральном анализе и т.п.

Рентгеновское излучение — разновидность высокоэнергетического электромагнитного излучения. Оно активно используется в различных отраслях медицины.

Рентгеновские лучи представляют собой электромагнитные волны, энергия фотонов которых на шкале электромагнитных волн находится между ультрафиолетовым излучением и гамма-излучением (от ~10 эВ до ~1 МэВ), что соответствует длинам волн от ~10^3 до ~10^−2 ангстрем (от ~10^−7 до ~10^−12 м). То есть это несравнимо более жесткое излучение, чем видимый свет, который находится на этой шкале между ультрафиолетом и инфракрасными («тепловыми») лучами.

Граница между рентгеном и гамма-излучением выделяется условно: их диапазоны пересекаются, гамма-лучи могут иметь энергию от 1 кэв. Различаются они по происхождению: гамма-лучи испускаются в ходе процессов, происходящих в атомных ядрах, рентгеновские же — при процессах, идущих с участием электронов (как свободных, так и находящихся в электронных оболочках атомов). При этом по самому фотону невозможно установить, в ходе какого процесса он возник, то есть деление на рентгеновский и гамма-диапазон во многом условно.

Рентгеновский диапазон делят на «мягкий рентген» и «жесткий». Граница между ними пролегает на уровне длины волны 2 ангстрема и 6 кэв энергии.

Генератор рентгеновского излучения представляет собой трубку, в которой создан вакуум. Там расположены электроды — катод, на который подается отрицательный заряд, и положительно заряженный анод. Напряжение между ними составляет десятки-сотни киловольт. Генерация рентгеновских фотонов происходит тогда, когда электроны «срываются» с катода и с высочайшей скоростью врезаются в поверхность анода. Возникающее при этом рентгеновское излучение называется «тормозным», его фотоны имеют различную длину волны.

Одновременно происходит генерация фотонов характеристического спектра. Часть электронов в атомах вещества анода возбуждается, то есть переходит на более высокие орбиты, а потом возвращается в нормальное состояние, излучая фотоны определенной длины волны. В стандартном генераторе возникают оба типа рентгеновского излучения.

История открытия

8 ноября 1895 года немецкий ученый Вильгельм Конрад Рентген обнаружил, что некоторые вещества под воздействием «катодных лучей», то есть потока электронов, генерируемого катодно-лучевой трубкой, начинают светиться. Он объяснил это явление воздействием неких X-лучей — так («икс-лучи») это излучение и сейчас называется на многих языках. Позже В.К. Рентген изучил открытое им явление. 22 декабря 1895 года он сделал доклад на эту тему в Вюрцбургском университете.

Позже выяснилось, что рентгеновское излучение наблюдалось и ранее, но тогда связанным с ним феноменам не придали большого значения. Катодно-лучевая трубка была изобретена уже давно, но до В.К. Рентгена никто не обращал особого внимания на почернение фотопластинок вблизи нее и т.п. явления. Неизвестна была и опасность, исходящая от проникающей радиации.

Виды и их влияние на организм

«Рентген» — самый мягкий тип проникающей радиации. Избыточное воздействие мягкого рентгена напоминает влияние ультрафиолетового облучения, но в более тяжелой форме. На коже образуется ожог, но поражение оказывается более глубоким, а заживает он намного медленнее.

Жесткий рентген представляет собой полноценную ионизирующую радиацию, способную привести к лучевой болезни. Рентгеновские кванты могут разрывать молекулы белков, из которых состоят ткани человеческого тела, а также молекулы ДНК генома. Но даже если рентгеновский квант разбивает молекулу воды, все равно: при этом образуются химически активные свободные радикалы H и OH, которые сами способны воздействовать на белки и ДНК. Лучевая болезнь протекает в тем более тяжелой форме, чем больше поражаются органы кроветворения.

Рентгеновские лучи обладают мутагенной и канцерогенной активностью. Это значит, что вероятность спонтанных мутаций в клетках при облучении возрастает, а иногда здоровые клетки могут перерождаться в раковые. Повышение вероятности появления злокачественных опухолей — стандартное следствие любого облучения, в том числе рентгеновского. Рентген является наименее опасным видом проникающей радиации, но он все равно может быть опасен.

Рентгеновское излучение: применение и как работает

Рентгеновское излучение применяется в медицине, а также в других сферах человеческой деятельности.

Рентгеноскопия и компьютерная томография

Наиболее частое применение рентгеновского излучения — рентгеноскопия. «Просвечивание» человеческого тела позволяет получить детальное изображение как костей (они видны наиболее четко), так и изображения внутренних органов.

Различная прозрачность тканей тела в рентгеновских лучах связана с их химическим составом. Особенности строения костей в том, что они содержат много кальция и фосфора. Другие же ткани состоят в основном из углерода, водорода, кислорода и азота. Атом фосфора превосходит по весу атом кислорода почти вдвое, а атом кальция — в 2,5 раза (углерод, азот и водород — еще легче кислорода). В связи с этим поглощение рентгеновских фотонов в костях оказывается намного выше.

Помимо двухмерных «снимков» рентгенография дает возможность создать трехмерное изображение органа: эта разновидность рентгенографии называется компьютерной томографией. Для этих целей применяется мягкий рентген. Объем облучения, полученный при одном снимке, невелик: он примерно равен облучению, получаемому при 2-часовом полете на самолете на высоте 10 км.

Рентгеновская дефектоскопия позволяет выявлять мелкие внутренние дефекты в изделиях. Для нее используется жесткий рентген, так как многие материалы (металл например) плохо «просвечиваются» из-за высокой атомной массы составляющего их вещества.

Рентгеноструктурный и рентгенофлуоресцентный анализ

У рентгеновских лучей свойства позволяют с их помощью детально рассматривать отдельные атомы. Рентгеноструктурный анализ активно применяется в химии (в том числе биохимии) и кристаллографии. Принцип его работы — дифракционное рассеивание рентгеновских лучей на атомах кристаллов или сложных молекул. При помощи рентгеноструктурного анализа была определена структура молекулы ДНК.

Рентгенофлуоресцентный анализ позволяет быстро определить химический состав вещества.

Существует множество форм радиотерапии, но все они подразумевают использование ионизирующей радиации. Радиотерапия делится на 2 типа: корпускулярный и волновой. Корпускулярный использует потоки альфа-частиц (ядер атомов гелия), бета-частиц (электронов), нейтронов, протонов, тяжелых ионов. Волновой использует лучи электромагнитного спектра — рентгеновские и гамма.

Используются радиотерапевтические методы прежде всего для лечения онкологических заболеваний. Дело в том, что радиация поражает в первую очередь активно делящиеся клетки, поэтому так страдают органы кроветворения (их клетки постоянно делятся, производя все новые эритроциты). Раковые клетки тоже постоянно делятся и более уязвимы для радиации, чем здоровая ткань.

Используется уровень облучения, который подавляет активность раковых клеток, умеренно влияя на здоровые. Под воздействием радиации происходит не разрушение клеток как таковое, а поражение их генома — молекул ДНК. Клетка с разрушенным геномом может некоторое время существовать, но уже не может делиться, то есть рост опухоли прекращается.

Рентгенотерапия — наиболее мягкая форма радиотерапии. Волновая радиация мягче корпускулярной, а рентген — мягче гамма-излучения.

При беременности

Использовать ионизирующую радиацию при беременности опасно. Рентгеновские лучи обладают мутагенной активностью и могут вызвать нарушения у плода. Рентгенотерапия несовместима с беременностью: она может применяться только в том случае, если уже решено производить аборт. Ограничения на рентгеноскопию мягче, но в первые месяцы она тоже строго запрещена.

В случае крайней необходимости рентгенологическое исследование заменяют магниторезонансной томографией. Но в первый триместр стараются избегать и ее (этот метод появился недавно, и с абсолютной уверенностью говорить об отсутствии вредных последствий).

Однозначная опасность возникает при облучении суммарной дозой не менее 1 мЗв (в старых единицах — 100 мР). При простом рентгеновском снимке (например, при прохождении флюорографии) пациентка получает примерно в 50 раз меньше. Для того, чтобы получить такую дозу за 1 раз, нужно подвергнуться детальной компьютерной томографии.

То есть сам по себе факт 1-2-кратного «рентгена» на ранней стадии беременности не грозит тяжелыми последствиями (но лучше не рисковать).

Лечение с помощью него

Рентгеновские лучи применяют прежде всего при борьбе со злокачественными опухолями. Этот метод хорош тем, что высокоэффективен: он убивает опухоль. Плох он тем, что здоровым тканям приходится немногим лучше, имеются многочисленные побочные эффекты. В особой опасности находятся органы кроветворения.

На практике применяются различные методы, позволяющие снизить воздействие рентгена на здоровые ткани. Лучи направляются под углом таким образом, чтобы в зоне их перекрещивания оказалась опухоль (благодаря этому основное поглощение энергии происходит как раз там). Иногда процедура производится в движении: тело пациента относительно источника излучения вращается вокруг оси, проходящей через опухоль. При этом здоровые ткани оказываются в зоне облучения лишь иногда, а больные — постоянно.

Рентген используется при лечении некоторых артрозов и подобных заболеваний, а также кожных болезней. При этом болевой синдром снижается на 50-90%. Так как излучение при этом используется более мягкое, побочных эффектов, аналогичных тем, что возникают при лечении опухолей, не наблюдается.