Статья об электростанциях для детей. Что такое электростанция

Электростанция

электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (См. Тепловая электростанция), гидроэлектрические станции (См. Гидроэлектрическая станция), гидроаккумулирующие электростанции (См. Гидроаккумулирующая электростанция), атомные электростанции (См. Атомная электростанция), а также приливные электростанции (См. Приливная электростанция), ветроэлектростанции (См. Ветроэлектрическая станция), геотермические электростанции (См. Геотермическая электростанция) и Э. с магнитогидродинамическим генератором (См. Магнитогидродинамический генератор).

Тепловые Э. (ТЭС) являются основой электроэнергетики (См. Электроэнергетика); они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По виду энергетического оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Основное энергетическое оборудование современных тепловых паротурбинных Э. составляют Котлоагрегат ы, паровые турбины (См. Паровая турбина), Турбогенератор ы, а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, Конденсатор ы, воздухоподогреватели, электрические распределительные устройства (См. Распределительное устройство). Паротурбинные Э. подразделяются на конденсационные электростанции (См. Конденсационная электростанция) и теплоэлектроцентрали (См. Теплоэлектроцентраль) (теплофикационные Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, который поступает в конденсационную турбину (См. Конденсационная турбина), внутренняя энергия пара преобразуется в турбине в механическую энергию и затем электрическим генератором в Электрический ток . Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, называются также ГРЭС .

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт ·ч вырабатываемой ими электроэнергии.

В 50-70-х гг. в электроэнергетике появились электроэнергетические установки с газовыми турбинами (См. Газовая турбина). Газотурбинные установки в 25-100 Мвт используются в качестве резервных источников энергии для покрытия нагрузок в часы «пик» или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбинированных парогазовых установок (ПГУ), в которых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

Дизельной Э. называется энергетическая установка, оборудованная одним или несколькими электрическими генераторами с приводом от дизелей (См. Дизель). На стационарных дизельных Э. устанавливаются 4-тактныс дизель-агрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и Энергопоезд а (по эксплуатационным характеристикам они относятся к стационарным Э.) оснащаются несколькими дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25-150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отдельных шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в сельском хозяйстве, в лесной промышленности, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветительных сетей. На транспорте дизельные Э. применяются как основные энергетические установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнические сооружения (Плотина , водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание Напор а, и энергетическое оборудование (гидротурбины (См. Гидротурбина), Гидрогенератор ы, распределительные устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрический генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещенными в нём гидроагрегатами является частью плотины. В деривационных ГЭС вода реки отводится из речного русла по водоводу (деривации (См. Деривация)), имеющему уклон, меньший, чем средний уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривационные ГЭС сооружают главным образом на реках с большим уклоном русла и, как правило, по совмещенной схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от других Э., главным образом в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их основное назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда другие Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за периодического характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, которые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит Ядерный реактор , где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, который поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрического контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции - ветродвигатель и электрический генератор. Ветровые Э. сооружают преимущественно в районах с устойчивым ветровым режимом.

Геотермическая Э. - паротурбинная Э., использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. Отсутствие на геотермических Э. котлоагрегатов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутренней энергии электропроводящей среды (жидкости или газа).

В. А. Прокудин.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Электростанция" в других словарях:

    Электростанция … Орфографический словарь-справочник

Сообщение о работе электростанций

Без электричества нашу современную жизнь очень сложно представить. Если не производить электрическую энергию, то остановятся фабрики, заводы, в квартирах погаснет свет, отключатся все электроприборы. Электроэнергетика одна из важнейших отраслей промышленности. Она является ключевой отраслью экономики, так как её значение для всех отраслей экономики велико. Любое производство промышленности просто остановится без электрической энергии, а соответственно ни одного товара мы не сможем изготовить.
Электроэнергию производят на электростанциях нескольких видов, сейчас мы с ними познакомимся.

ГЭС - гидроэлектростанции

Их строят на реках. Электричество вырабатывается здесь за счёт потока воды, падающей с плотины. Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Главной задачей в строительстве гидроэлектростанции является создание напора воды. При наиболее распространенном варианте строительства реку перегораживают плотиной, которая поднимает уровень воды, создавая необходимый напор. Самую высокую в мире плотину (305 метров) имеет Цзиньпинская ГЭС, расположенная на реке Ялунцзян. Вода под напором поступает на лопасти турбины гидроэлектростанции, которая в свою очередь приводит в действие генераторы, вырабатывающие электричество. Мощность ГЭС зависит от напора и количества воды, проходящей через гидроагрегаты.

ТЭС - тепловые электростанции

Здесь электричество вырабатывается за счет, сжигания топлива - природного газа, мазута, угля. Сжигая топливо, получают тепловую энергию, которая на ТЭС используется для нагрева воды и получения пара. Получаемый в парогенераторе (котлоагрегате) пар приводит во вращение паровую турбину, соединённую с электрическим генератором и таким образом вырабатывается электроэнергия. Официальное название таких электростанций в России – Государственная районная электрическая станция (ГРЭС).

АЭС - атомные электростанции

Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Работают на атомном (ядерном) топливе. Тепло, которое выделяется в атомном реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем.

Днем и ночью бежит по проводам электрический ток. Он необходим на заводе и на животноводческой ферме, в поезде и в квартире, на телефонной станции и в магазине. Везде вы встре- тите электродвигатели, электроприборы или просто электрическую лампочку.
Откуда же берется электрическая энергия? Ее вырабатывают на элект- ростанциях специальные машины - генераторы электрического тока. Разные бывают генераторы. И очень маленькие, энергии которых хватает только для освещения небольшой комнаты. И генераторы-гиганты, которые могут дать электроэнергию большому городу.
Чтобы генератор давал электрический ток, его надо вращать. Конечно, не весь генератор, а только его часть - ротор. У больших генераторов ротор весит сотни тонн, и вращает его особая машина - турбина.
У каждой турбины есть рабочее колесо с лопатками, или лопастями. Струя пара, раскаленного газа или воды с силой бьет по лопастям рабочего колеса турбины и заставляет ее вращаться, а вместе с турбиной - и ротор генератора.
Если турбину вращает струя воды, то такая турбина называется гидрав- лической, а электростанция, на которой установлены такие турбины, - гидроэлектростанцией или сокращенно ГЭС. На тепловой электростанции (ТЭС) турбину вращает пар, а на газотурбинной - струя раскаленных газов.
Гидроэлектростанции обычно строят на больших, полноводных реках, таких, как Волга, Днепр, Енисей, или же на горных реках (например, на реке Вахш построена Нурекская ГЭС). Здание ГЭС, плотина, судоходные каналы - это сложные и дорогие сооружения. Для ТЭС не нужны плотины и водохранилища, строить их можно везде. Но ТЭС постоянно нуждаются в топливе, чтобы можно было нагревать воду и получать пар. И идут один за другим поезда - везут на ТЭС уголь, мазут; днем и ночью гонят газ по трубам специальные вентиляторы- компрессоры.
А вот для атомной электростанции (АЭС) топлива требуется совсем не- много. Но топливо это особое. Всего 10 граммов атомного топлива заменяют целый вагон угля. Так же как на тепловой, на атомной электростанции" электрогенераторы вращаются паро- выми турбинами. Но ни угольной, ни газовой топки, ни парового котла там нет. Тепло, которое используют для получения пара, выделяется в атомном реакторе - сердце АЭС - в результате ядерной реакции. Ядерную реакцию можно сравнить с небольшими непрерывно повторяющимися атомными взрывами. Но это мирные взрывы. Реактор надежно закрыт толстыми бетонными стенами. Ядерную реакцию непрерывно контролируют автоматические приборы. Если потребуется, ее можно быстро остановить.
Ученые и инженеры ищут новые источники электроэнергии. Нельзя ли, например, заставить работать морские приливы и отливы? Заставить море вращать гидротурбины электростанции? Оказывается, можно. И такие электростанции - их называют приливными или ПЭС - уже работают.
Миллиарды лет щедрое Солнце посылает свои лучи на Землю. Солнечный свет - это тоже энергия. И люди научились превращать ее в электрический ток. Для этого созданы специальные приборы на полупроводниках - фотоэлементы. Собранные вместе, они образуют так называемые солнечные батареи. Солнечные батареи пока еще дороги, и на Земле их используют редко. Зато именно они дают электроэнергию космическим кораблям и искусственным спутникам Земли.

Электричество было известно людям с самых давних времен. Правда практически измерять электричество человек научился только в начале 19 века. Потом понадобилось еще 70 лет до того момента, когда в 1872 году русский ученый А.Н.Лодыгин изобрел первую в мире электрическую лампочку накаливания. Но знания о таком явлении как электричество были у людей уже много тысяч лет назад. Ведь ещё древний человек заметил удивительное свойство натертой янтарём шерсти притягивать нитки, пыль и другие мелкие предметы. Гораздо позже данное свойство было замечено и за другими веществами, такими как сера, сургуч и стекло. И по причине того, что «янтарь» по-гречески звучал как «электрон», эти свойства начали называться электрическими.

А причина возникновения электричества заключается в том, что при трении заряд делится на положительные и отрицательные заряды. Соответственно, заряды с одним знаком отталкиваются друг от друга, а с разными - притягиваются. Двигаясь по металлической проволоке, которая является проводником, эти заряды и создают электричество.
Без электричества в наше время просто невозможно представить нормальную цивилизованную жизнь. Оно светит, греет, даёт нам возможность общаться на огромных расстояниях друг от друга и т. п. Электрический ток приводит в действие самые различные агрегаты и приборы - от маленького будильника до огромного прокатного стана. Поэтому если представить, что однажды электричество может исчезнуть одновременно на всей планете, жизнь человека резко изменит свое направление. Мы уже не можем обходиться без электрического тока, ведь он питает и заставляет работать практически все механизмы и приборы, придуманные человеком. И если посмотреть вокруг себя, то можно увидеть, что в любой квартире, хотя бы в одну из розеток будет воткнута штепсельная вилка, от которой идет провод в магнитофон, телевизор, микроволновую печь или в другие приборы, которые мы ежедневно используем дома или на работе.
Сегодня без электричества не сможет прожить ни одна цивилизованная страна. Каким же образом добывается такое огромное количество электроэнергии, которое может обеспечить потребности миллиардов людей, живущих на Земле?
Для этих целей созданы электростанции . На них при помощи генераторов и создаётся электроэнергия, которая затем передаётся на огромные расстояния по линиям электропередач. Электростанции бывают разных видов. Одни для получения электричества используют энергию воды, они называются гидроэлектростанции. Другие получают энергию от сгорания топлива (газа, дизельного топлива или угля). Это тепловые электростанции, которые вырабатывают не только электрический ток, но и могут одновременно нагревать воду, которая затем поступает в отопительные трубы, греющие помещения домов или цехов заводов. А есть ещё атомные электростанции, ветровые, приливные, солнечные и многие другие.
В гидроэлектростанции (ГЭС) поток воды вращает турбины генератора, который вырабатывает электроэнергию. В тепловых электростанциях (ТЭС) эта обязанность возложена на водяной пар, который образуется в результате нагрева воды от сгорания топлива. Водяной пар под очень большим давлением врывается в турбины генератора, где расположено множество вертящихся частей снабженных специальными лепестками, напоминающими пропеллеры самолета. Пар, проходя через лепестки, вращает рабочие агрегаты генератора, благодаря чему и вырабатывается электрический ток.
Похожий принцип используется и в атомной электростанции (АЭС), только там топливом служат радиоактивные материалы - уран и плутоний. Благодаря особым свойствам урана и плутония они выделяют очень большое количество тепла, которое используется для нагрева воды и добывания водяного пара. Потом нагретый пар поступает в турбину и происходит выработка электрического тока. Интересно, что всего десять граммов подобного топлива заменяет целый вагон угля.

В основном электростанции не работают сами по себе. Они связаны между собой линиями электропередач. С их помощью электроэнергия направляется туда, где она больше всего нужна. Линии электропередач протянулись по всей нашей необъятной стране, поэтому тот ток, который мы используем у себя дома может вырабатываться очень далеко, за сотни километров от нашей квартиры. Но где бы ни стояла электростанция, благодаря линиям электропередачи каждый человек сможет воткнуть вилку и розетку и включить любой необходимый ему прибор или устройство.


Электроста нция, электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции , гидроэлектрические станции , гидроаккумулирующие электростанции , атомные электростанции , а также приливные электростанции , ветроэлектростанции , геотермические электростанции и Э. с магнитогидродинамическим генератором .

Тепловые Э. (ТЭС) являются основой электроэнергетики ; они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По виду энергетического оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Основное энергетическое оборудование современных тепловых паротурбинных Э. составляют котлоагрегаты , паровые турбины , турбогенераторы , а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, конденсаторы , воздухоподогреватели, электрические распределительные устройства . Паротурбинные Э. подразделяются на конденсационные электростанции и теплоэлектроцентрали (теплофикационные Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, который поступает в конденсационную турбину , внутренняя энергия пара преобразуется в турбине в механическую энергию и затем электрическим генератором в электрический ток . Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, называются также ГРЭС .

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт ·ч вырабатываемой ими электроэнергии.

В 50-70-х гг. в электроэнергетике появились электроэнергетические установки с газовыми турбинами . Газотурбинные установки в 25-100 Мвт используются в качестве резервных источников энергии для покрытия нагрузок в часы «пик» или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбинированных парогазовых установок (ПГУ), в которых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

Дизельной Э. называется энергетическая установка, оборудованная одним или несколькими электрическими генераторами с приводом от дизелей . На стационарных дизельных Э. устанавливаются 4-тактныс дизель-агрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и энергопоезда (по эксплуатационным характеристикам они относятся к стационарным Э.) оснащаются несколькими дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25-150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отдельных шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в сельском хозяйстве, в лесной промышленности, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветительных сетей. На транспорте дизельные Э. применяются как основные энергетические установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнические сооружения (плотина , водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание напора , и энергетическое оборудование (гидротурбины , гидрогенераторы , распределительные устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрический генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещенными в нём гидроагрегатами является частью плотины. В деривационных ГЭС вода реки отводится из речного русла по водоводу (деривации ), имеющему уклон, меньший, чем средний уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривационные ГЭС сооружают главным образом на реках с большим уклоном русла и, как правило, по совмещенной схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от других Э., главным образом в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их основное назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда другие Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за периодического характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, которые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит ядерный реактор , где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, который поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрического контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции - ветродвигатель и электрический генератор. Ветровые Э. сооружают преимущественно в районах с устойчивым ветровым режимом.

Геотермическая Э. - паротурбинная Э., использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. Отсутствие на геотермических Э. котлоагрегатов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутренней энергии электропроводящей среды (жидкости или газа).

Лит.: см. при статьях Атомная электростанция , Ветроэлектрическая станция , Гидроэлектрическая станция , Приливная электростанция . Тепловая паротурбинная электростанция , а также при ст. Наука (раздел Энергетическая наука и техника. Электротехника).

В. А. Прокудин.